1 Benchmark Overview Table



Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
Jet Classification
Jet Classifica- | Particle Real-time classification, Classification Real-time in- | Accuracy, Keras E:>
tion Physics classifi- real-time ML, ference, model | AUC DNN,
cation of | jet tagging, compression QKeras
particle QKeras performance quantized
jets using DNN
HL-LHC
simulation
features
Irregular Sensor Data Compression
Irregular Particle Real-time compression, Compression Reconstruction MSE, Autoencoder @:}
Sensor Data | Physics compres- autoencoder, quality, com- | Compres- Quantized
Compression sion of | sparse data, pression effi- | sion ratio autoen-
sparse sen- | irregular ciency coder
sor data | sampling
with au-
toencoders
Beam Control
Beam Control | Accelerators | Reinforcement RL, beam | Control Policy per- | Stability, DDPG, 2],
and Mag- | learning stabiliza- formance in | Control PPO 3=
nets control of | tion, control simulated accel- | loss (planned)
accelera- systems, erator control
tor beam | simulation
position

Continued on next page


https://github.com/fastmachinelearning/fastml-science/tree/main/jet-classify
https://github.com/fastmachinelearning/fastml-science/tree/main/sensor-data-compression
https://github.com/fastmachinelearning/fastml-science/tree/main/beam-control

Name

Ratings Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
Ultrafast jet classification at the HL-LHC
Ultrafast jet | Particle FPGA- jet classifica- | Classification Real-time in- | Accuracy, MLP, Deep | |4]=
classifica- Physics optimized tion, FPGA, ference  under | Latency, Sets, Inter-
tion at the real-time quantization- FPGA con- | Resource action Net-
HL-LHC jet origin | aware train- straints utilization work
classifica- ing, Deep
tion at the | Sets, In-
HL-LHC teraction
Networks
Quench detection
Quench  de- | Accelerators | Real-time quench de- | Anomaly detec- | Real-time ROC- Autoencoder
tection and Mag- | detection tection, tion, Quench lo- | anomaly de- | AUC, RL agents
nets of  super- | autoencoder, calization tection with | Detection (in  devel-
conducting | anomaly multi-modal latency opment)
magnet detection, sensors
quenches real-time
using ML
SUnE
DUNE Particle Real-time DUNE, Trigger selec- | Low-latency Detection CNN, 15]=
Physics ML for | time-series, tion, Time- | event detection efficiency, LSTM
DUNE real-time, series anomaly Latency (planned)
DAQ trigger detection
time-series
data

Continued on next page


https://arxiv.org/pdf/2402.01876
https://indico.fnal.gov/event/66520/contributions/301423/attachments/182439/250508/fast_ml_dunedaq_sonic_10_15_24.pdf

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
Intelligent InstrumentatioReal-time FPGA, Trigger classifi- | Low-latency Accuracy Bipartite |6]=
experiments and De- | FPGA- Graph Neural | cation, Detector | GNN inference | (charm Graph Net-
through tectors; based Network, control, Real- | on FPGA and beauty | work with
real-time Al Nuclear trigger- hlsdml, real- | time inference detection), Set Trans-

Physics; ing and | time infer- Latency formers
Particle detector ence, detector (micros), (BGN-ST),
Physics control for | control Resource GarNet
sPHENIX utilization (edge-
and future (LUT/FF/BR ANESIHSE)
EIC
Neural Ar- | Physics; Automated | neural ar- | Classification, Hardware- Accuracy, NAC- |7]=
chitecture Materials neural ar- | chitecture Peak finding aware model | Latency, based
Codesign for | Science; chitecture search, optimization; Resource BraggNN,
Fast Physics | Particle search and | FPGA de- low-latency utilization NAC-
Applications Physics hardware- ployment, inference optimized
efficient quantization, Deep Sets
model pruning, (jet)
codesign hls4ml
for fast
physics ap-
plications
Smart Pixels | Particle On-sensor, smart pixel, | Image Classi- | On-chip, low- | Data rejec- | 2-layer 18]=
for LHC Physics; in-pixel on-sensor in- | fication, Data | power inference; | tion rate, | pixel NN
Instrumen- | ML fil- | ference, data | filtering data reduction Power per
tation and | tering for | reduction, pixel
Detectors high-rate trigger
LHC pixel
detectors

Continued on next page


https://arxiv.org/pdf/2501.04845
https://arxiv.org/abs/2501.05515
https://arxiv.org/abs/2406.14860

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
HEDM (BraggNN)
HEDM Material Fast Bragg | BraggNN, Peak detection High- Localization | BraggNN 19]=
(BraggNN) Science peak anal- | diffraction, throughput accuracy,
ysis using | peak finding, peak localiza- | Inference
deep learn- | HEDM tion time
ing in
diffraction
microscopy
4D-STEM Material Real-time 4D-STEM, Image Clas- | Real-time large- | Classificatiof CNN mod- | |10/=
Science ML for | electron mi- | sification, scale microscopy | accuracy, els (proto-
scanning croscopy, Streamed data | inference Through- type)
trans- real-time, inference put
mission image pro-
electron cessing
microscopy
In-Situ High- | Fusion/PlasmaReal-time plasma, in- | Image Classifi- | Real-time diag- | Accuracy, CNN 111}|=
Speed Com- image clas- | situ  vision, | cation nostic inference FPS
puter Vision sification real-time ML
for in-situ
plasma
diagnostics

Continued on next page


https://arxiv.org/abs/2008.08198
https://openreview.net/pdf?id=7yt3N0o0W9
https://arxiv.org/abs/2312.00128

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
BenchCouncil | General End-to-end | benchmarking, | Training, In- | System-level AI | Throughput, ResNet, 112]=
AlBench Al Dbench- | Al systems, | ference, End- | workload perfor- | Latency, BERT,

marking application- to-end Al | mance Accuracy GANS,
across level evalua- | workloads Recom-
micro, tion mendation
compo- systems
nent, and
application
levels
BenchCouncil | General Big data | big data, AI | Data pre- | Data processing | Data CNN, |13]=
Big- and AI | benchmark- processing, and AI model | through- LSTM,
DataBench bench- ing, data | Inference, End- | inference perfor- | put, La- | SVM,
marking analytics to-end data | mance at scale tency, XGBoost
across pipelines Accuracy
structured,
semi-
structured,
and un-
structured
data work-
loads
MLPerf HPC Cosmology, | Scientific HPC, train- | Training, Infer- | Scaling effi- | Training CosmoFlow, | |14|=
Climate, ML train- | ing, inference, | ence ciency, training | time, Accu- | DeepCAM,
Protein ing and | scientific ML time, model | racy, GPU | OpenCata-
Structure, inference accuracy on | utilization lyst
Catalysis on HPC HPC
systems

Continued on next page


https://www.benchcouncil.org/AIBench/
https://www.benchcouncil.org/BigDataBench/
https://github.com/mlcommons/hpc

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
WLCommans Science
MLCommons Earthquake, | AI bench- | science Al, | Time-series Inference accu- | MAE, CNN, |15]=
Science Satellite marks for | benchmark, analysis, Image | racy, simulation | Accuracy, GNN,
Image, scientific MLCom- classification, speed-up, gener- | Speedup vs | Trans-
Drug Dis- | appli- mons, HPC Simulation sur- | alization simulation former
covery, cations rogate modeling
Electron including
Micro- time-series,
scope, imag-
CFD ing, and
simulation
LHC New Physics Dataset
LHC New | Particle Real-time anomaly de- | Anomaly detec- | Unsupervised ROC- Autoencoder| [16|=
Physics Physics; LHC event | tection, pro- | tion, Event clas- | signal detection | AUC, Variational
Dataset Real-time filtering for | ton collision, | sification under latency | Detection autoen-
Triggering anomaly real-time in- and bandwidth | efficiency coder,
detec- ference, event constraints Isolation
tion wusing | filtering, un- forest
proton supervised
collision ML
data

Continued on next page


https://github.com/mlcommons/science
https://arxiv.org/pdf/2107.02157

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
MLCommons Healthcare; | Federated medical Al, | Federated eval- | Clinical accu- | ROC AUC, | MedPerf- 117]=
Medical AT Medical AT | bench- federated uation, Model | racy, fairness, | Accuracy, validated

marking evaluation, validation generalizabil- Fairness CNNs,
and eval- | privacy- ity, privacy | metrics GaNDLF
uation of | preserving, compliance workflows
medical fairness,
Al  mod- | healthcare
els across | benchmarks
diverse
real-world
clinical
data
CaloChallenge 2022
CaloChallenge | LHC Fast calorimeter Surrogate mod- | Simulation fi- | Histogram | VAE vari- | |18|=
2022 Calorime- generative- simulation, eling delity, speed, | similarity, ants, GAN
ter; Parti- | model- generative efficiency Classifier variants,
cle Physics based models, AUC, Gen- | Normaliz-
calorimeter | surrogate eration ing flows,
shower modeling, latency Diffusion
simulation LHC, fast models
evaluation simulation

Continued on next page


https://github.com/mlcommons/medical
http://arxiv.org/abs/2410.21611

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
Papers With Code (SOTA Platform)
Papers With | General Open leaderboard, Multiple (Clas- | Model perfor- | Task- All pub- | |19]=
Code (SOTA | ML; All | platform benchmark- sification, De- | mance across | specific lished
Platform) domains tracking ing, repro- | tection, NLP, | tasks (accuracy, | (Accuracy, models
state-of- ducibility, etc.) F1, BLEU, etc.) | F1, BLEU, | with code
the-art open-source etc.)
results,
bench-
marks, and
implemen-
tations
across ML
tasks and
papers
Codabench General Open- benchmark Multiple Model re- | Submission | Arbitrary |20]=
ML; Multi- | source platform, producibility, count, code sub-
ple platform code sub- performance Leader- missions
for or- | mission, across datasets board
ganizing competi- ranking,
repro- tions, meta- Task-
ducible benchmark specific
Al bench- metrics
marks and
competi-
tions

Continued on next page


https://paperswithcode.com/sota
https://www.codabench.org/

0T

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
Sabath (SBI-FAIR)
Sabath (SBI- | Systems; FAIR meta- Systems bench- | Metadata Metadata N/A 21]=
FAIR) Metadata metadata benchmark, marking tracking, repro- | complete-
frame- metadata, ducible HPC | ness, FAIR
work  for | HPC, surro- workflows compliance
ML-driven gate modeling
surrogate
workflows
in HPC
systems
PDEBench CFD; Benchmark | PDEs, CFD, | Supervised Time-dependent | RMSE, FNO, U- | |22|]=
Weather suite  for | scientific ML, | Learning PDE model- | boundary Net, PINN,
Modeling ML-based surrogate ing; physical | RMSE, Gradient-
surrogates modeling, accuracy Fourier Based
solving NeurIPS RMSE inverse
time- methods
dependent
PDEs
The Well biological Foundation | surrogate Supervised Surrogate mod- | Dataset FNO |23]=
systems, model  + | modeling, Learning eling, physics- | size, Do- | baselines,
fluid  dy- | surrogate founda- based prediction | main U-Net
namics, dataset tion  model, breadth baselines
acoustic spanning physics  sim-
scattering, 16 physical | ulations,
astro- simulation spatiotempo-
physical domains ral dynamics
MHD

Continued on next page


https://sbi-fair.github.io/docs/software/sabath/
https://github.com/pdebench/PDEBench
https://polymathic-ai.org/the_well/

1T

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
LLM- LLM; Hardware LLM, infer- | Inference Bench- | Inference Token LLaMA- [24]=
Inference- HPC/inferengeperfor- ence bench- | marking throughput, throughput | 2-7B,

Bench mance marking, latency, hard- | (tok/s), LLaMA-
bench- GPU, ac- ware utilization Latency, 2-70B,
marking of | celerator, Framework- | Mistral-7B,
LLMs on | throughput hardware Qwen-7B
Al acceler- mix perfor-
ators mance
SGLang LLM Vi- | Fast serv- | LLM serv- | Model serving | Serving Tokens/sec, | LLaVA, |25]=
Framework sion ing frame- | ing, vision- | framework throughput, Time-to- DeepSeek,
work  for | language, JSON /task- first-token, Llama
LLMs and | RadixAtten- specific latency Through-
vision- tion, perfor- put gain vs
language mance, JSON baseline
models decoding
VLLM Inference and Serving Engine
vLLM In- | LLM; High- LLM  infer- | Inference Bench- | Throughput, la- | Tokens/sec, | LLaMA, |26]=
ference and | HPC/inferenpethroughput, | ence, Page- | marking tency, memory | Time to | Mixtral,
Serving En- memory- dAttention, efficiency First Token | FlashAttentipn-
gine efficient CUDA graph, (TTFT), based
inference streaming Memory models
and serving | API, quanti- footprint
engine for | zation

LLMs

Continued on next page


https://github.com/argonne-lcf/LLM-Inference-Bench
https://github.com/sgl-project/sglang/tree/main/benchmark
https://github.com/vllm-project/vllm/tree/main/benchmarks

¢l

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
VLLM Performance Dashboard
vLLM Perfor- | LLM; Interactive Dashboard, Performance vi- | Throughput, la- | Tokens/sec, | LLaMA-2, |127)=
mance Dash- | HPC/inferenredashboard Throughput sualization tency, hardware | TTFT, Mistral,
board showing visualization, utilization Memory Qwen
inference Latency anal- usage
perfor- ysis, Metric
mance of | tracking
vLLM
Nixtla Neu- | Time- High- time-series, Time-series fore- | Forecast ac- | RMSE, NBEATS, |28|=
ralForecast series fore- | performance| neural fore- | casting curacy, inter- | MAPE, NHITS,
casting; neural fore- | casting, pretability, CRPS TFT,
General casting NBEATS, speed DeepAR
ML library NHITS, TFT,
with >30 | probabilistic
models forecasting,
usability
Nixtla Neu- | Time- Official NHITS, Time-series fore- | Accuracy, com- | RMSE, NHITS |29]=
ral Forecast | series; NHITS long-horizon casting pute efficiency | MAPE
NHITS General imple- forecasting, for long series
ML mentation neural in-
for  long- | terpolation,
horizon time-series
time series
forecasting

Continued on next page


https://simon-mo-workspace.observablehq.cloud/vllm-dashboard-v0/
https://github.com/Nixtla/neuralforecast
https://github.com/Nixtla/neuralforecast

€l

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
Nixtla Neural Forecast TimeLLM
Nixtla Neu- | Time- Reprogrammingime-LLM, Time-series fore- | Model reuse via | RMSE, Time-LLM |30]=
ral Forecast | series; LLMs for | language casting LLM, few-shot | MAPE
TimeLLM General time series | model, time- forecasting
ML forecasting series, repro-
gramming
Nixtla Neural Forecast TimeGPT
Nixtla Neu- | Time- Time-series | TimeGPT, Time-series Zero-shot RMSE, TimeGPT [31]=
ral Forecast | series; founda- founda- forecasting, forecasting, Anomaly
TimeGPT General tion model | tion model, | Anomaly detec- | anomaly detec- | detection
ML "TimeGPT” | time-series, tion tion metrics

for fore- | generative

casting and | model

anomaly

detection

O WL oty Crllengs Gt iar ey

HDR ML | Astrophysics{ Detecting anomaly Anomaly detec- | Novel event de- | ROC- Deep latent | [32]=
Anomaly Time-series | anomalous detection, tion tection in physi- | AUC, CNNs, Au-
Challenge gravitationalt gravitational cal signals Preci- toencoders
(Gravita- wave  sig- | waves, as- sion/Recall
tional Waves) nals from | trophysics,

LIGO/Virgo| time-series

datasets

Continued on next page


https://github.com/Nixtla/neuralforecast
https://github.com/Nixtla/neuralforecast
https://www.codabench.org/competitions/2626/

4!

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
HDR ML Anomaly Challenge (Butterfly)
HDR ML | Genomics; Detecting anomaly de- | Anomaly detec- | Hybrid detec- | Classification CNN- 132]=
Anomaly Image/CV hybrid tection, com- | tion tion in biological | accuracy, based
Challenge butterflies puter vision, systems F'1 score detectors
(Butterfly) via image | genomics,
anomaly butterfly
detection hybrids
in genomic-
informed
dataset
HDR ML Anomaly Challenge (Sea Level Risd)
HDR ML | Climate Detecting anomaly Anomaly detec- | Detection of | ROC- CNNs, 132|=
Anomaly Science; anomalous detection, tion environmental AUC, RNNs,
Challenge Time- sea-level climate  sci- anomalies Preci- Transform-
(Sea Level | series, rise and | ence, sea-level sion/Recall | ers
Rise) Image/CV | flooding rise, time-
events series, remote
via  time- | sensing
series and
satellite
imagery
Single Qubit Readout on QICK System
Single Qubit | Quantum Real-time qubit  read- | Classification Single-shot  fi- | Accuracy, hls4ml 133]=
Readout on | Computing | single- out, hls4ml, delity, inference | Latency quantized
QICK System qubit state | FPGA, QICK latency NN
classifica-
tion using
FPGA
firmware

Continued on next page


https://www.codabench.org/competitions/3764/
https://www.codabench.org/competitions/3223/
https://github.com/fastmachinelearning/ml-quantum-readout

q1

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
GPQA: A | Science Graduate- Google-proof, Multiple choice Scientific  rea- | Accuracy GPT-4 |34|=
Graduate- (Biology, level, multiple- soning, knowl- baseline
Level Google- | Physics, expert- choice, expert edge probing
Proof Ques- | Chemistry) | validated reasoning,
tion and multiple- science QA
Answer choice
Benchmark questions

hard even
with  web
access
SeafloorAl
SeafloorAl Marine Large-scale | sonar im- | Image segmen- | Geospatial un- | Segmentation SegFormer, | [35|=
Science; vision- agery, vision- | tation, Vision- | derstanding, pixel accu- | ViLT-style
Vision- language language, language QA multimodal racy, QA | multi-
Language dataset for | seafloor reasoning accuracy modal
seafloor mapping, models
mapping segmentation,
and ge- | QA
ological
classifica-
tion
SuperCon3D
SuperCon3D Materials Dataset superconductivityRegression (Tc | Structure-to- MAE (Tc), | SODNet, |36|=
Science; and models | crystal struc- | prediction), property predic- | Validity of | DiffCSP-
Supercon- for predict- | tures, equiv- | Generative tion, structure | generated SC
ductivity ing and | ariant GNN, | modeling generation structures
generating generative
high-Tc models
supercon-
ductors
using 3D
crystal
structures

Continued on next page


https://arxiv.org/abs/2311.12022
https://neurips.cc/virtual/2024/poster/97432
https://neurips.cc/virtual/2024/poster/97553

91

Name

Ratings Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
GeSS Scientific Benchmark | geometric Classification, OOD per- | Accuracy, GCN, 137)=
ML; Ge- | suite eval- | deep learning, | Regression formance in | RMSE, EGNN,
ometric uating distribution scientific set- | OOD  ro- | DimeNet+-+
Deep geometric shift, OOD tings bustness
Learning deep learn- | robustness, delta
ing models | scientific
under applications
real-world
distribu-
tion shifts
Vocal Call Locator (VCL)
Vocal Call | Neuroscience; Benchmarking source lo- | Sound source lo- | Source localiza- | Localization | CNN- |38]=
Locator Bioacous- sound- calization, calization tion accuracy in | error based SSL
(VCL) tics source bioacoustics, bioacoustic set- | (cm), Re- | models
localization | time-series, tings call/Precision
of rodent | SSL
vocaliza-
tions from
multi-
channel
audio
MassSpecGym
MassSpecGym | CheminformatiBgnchmark | mass spec- | De novo gener- | Molecular iden- | Structure Graph- 139]=
Molecular suite for | trometry, ation, Retrieval, | tification and | accuracy, based
Discovery discovery molecular Simulation generation from | Retrieval generative
and identi- | structure, spectral data precision, models,
fication of | de novo Simulation Retrieval
molecules generation, MSE baselines
via MS/MS | retrieval,
dataset

Continued on next page


https://neurips.cc/virtual/2024/poster/97816
https://neurips.cc/virtual/2024/poster/97470
https://neurips.cc/virtual/2024/poster/97823

L1

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
Urban Data Layer (UDL)
Urban Data | Urban Unified data pipeline, | Prediction, Multi-modal Task- Baseline |40]=
Layer (UDL) Comput- data urban science, | Classification urban inference, | specific regres-
ing; Data | pipeline multi-modal, standardization accuracy sion/classification
Engineer- for multi- | benchmark or RMSE pipelines
ing modal
urban
science
research
Delta Squared-DFT’
Delta ComputationalBenchmarking density Regression High-accuracy Mean Delta [41]=
Squared- Chemistry; machine- functional energy pre- | Absolute Squared-
DFT Materials learning theory, Delta diction, DFT | Error (eV), | ML cor-
Science corrections Squared-ML correction Energy rection
to DFT | correction, ranking networks,
using Delta | reaction accuracy Kernel
Squared- energetics, ridge  re-
trained quantum gression
models for | chemistry
reaction
energies
LLMs for Crop Science
LLMs for | Agricultural | Evaluating crop sci- | Question An- | Scientific knowl- | Accuracy, GPT-4, |42]=
Crop Science Science; LLMs on | ence, prompt | swering, Infer- | edge, crop rea- | F1 score LLaMA-
NLP crop trait | engineer- ence soning 2-13B,
QA and | ing, domain T5-XXL
textual adaptation,
inference question
tasks with | answering
domain-
specific
prompts

Continued on next page


https://neurips.cc/virtual/2024/poster/97837
https://neurips.cc/virtual/2024/poster/97788
https://neurips.cc/virtual/2024/poster/97570

81

Ratings Name Domain Focus Keywords Task Types ATl Capability Metrics Models Citation
SPIQA (LLM)
SPIQA Multimodal | Evaluating multimodal Multimodal QA Visual reason- | Accuracy, LLaVA, 143]=
(LLM) Scientific LLMs on | QA, scien- ing, scientific | F1 score MiniGPT-
QA; Com- | image- tific  figures, figure under- 4, Owl-
puter based image+text, standing LLM
Vision scientific chain-of- adapter
paper thought variants
figure prompting
QA tasks
(LLM
Adapter
perfor-
mance)



https://neurips.cc/virtual/2024/poster/97575

2 Radar Chart Table

Jet Classification

metricé

reference 3

reference

reference X

metricé

reference X

DUNE

pecification

4D-STEM

pecification

Codabench

pecification

Irregular Sensor Data Compression

metri

metri

reference

metri

reference X

metri

reference X

pecification

metri

reference X

Beam Control

metrigé

reference

Neural Architecture Codesign for Fast Physics Applications

BenchCouncil AlBench

reference X

Ultrafast jet classification at the HL-LHC

Quench detection

pecification

reference 3

reference

Smart Pixels for LHC HEDM (BraggNN)

pecification datase ecification

metri

reference X

The Well

pecification pecification

reference X

reference X

Radar chart overview (page 1)
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SGLang Framework

pecification

reference 3

reference 3

VLLM Inference and Serving Engine

pecification

MassSpecGym

pecification

metri software

reference

VLLM Performance Dashboard

Nixtla NeuralForecast

ecification

pecification

o G @ | A k

reference

HDR ML Anomaly Challenge (Butterfly)

pecification

reference 3

pecification

reference 3

entation reference:

Urban Data Layer (UDL) Delta Squared-DFT

pecification

ecification

metri ftware  metrics software

reference reference 3

SPIQA (LLM)

ecification

metri software

reference 3

Figure 2: Radar chart overview (page 2)
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Nixtla Neural Forecast NHITS

pecification

HDR ML Anomaly Challenge (Sea Level Rise)

pegification

metr

reference 3

GesS

pecification

metri software

reference

LLMs for Crop Science

pecification

metrics software

reference Y



3 Benchmark Details
4 Jet Classification

date: 2024-05-01

version: TODO

last _updated: 2024-05

expired: unknown

valid: yes

valid__date: TODO

url: |https://github.com/fastmachinelearning/fastml-science/tree /main/jet-classify
doi: TODO

domain: Particle Physics

focus: Real-time classification of particle jets using HL-LHC simulation features
keywords: - classification - real-time ML - jet tagging - QKeras

summary: This benchmark evaluates ML models for real-time classification of particle jets using high-level features derived
from simulated LHC data. It includes both full-precision and quantized models optimized for FPGA deployment.

licensing: TODO
task types: - Classification

ai_capability measured: - Real-time inference - model compression performance
metrics: - Accuracy - AUC

models: - Keras DNN - QKeras quantized DNN

ml_motif: - Real-time

type: Benchmark

ml_task: - Supervised Learning

solutions: TODO

notes: Includes both float and quantized models using QKeras
contact.name: Jules Mubhizi

contact.email: unknown

datasets.links.name: JetClass

datasets.links.url: |https://zenodo.org/record /6619768
results.links.name: ChatGPT LLM

results.links.url: |https://docs.google.com/document/d/1runrcij-eoH3 1gGZ8wm2z1YbL1Qf5cSNbVbHyWFDs4
fair.reproducible: True

fair.benchmark ready: True

ratings.software.rating: 0

ratings.software.reason: Not analyzed.
ratings.specification.rating: 9.0

ratings.specification.reason: Task and format (multiple-choice QA with 5 options) are clearly defined; grounded in Con-
ceptNet with consistent structure, though no hardware/system constraints are specified.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Public, versioned, and FAIR-compliant; includes metadata, splits, and licensing; well-integrated
with HuggingFace and other ML libraries.

ratings.metrics.rating: 9.0
ratings.metrics.reason: Accuracy is a simple, reproducible metric aligned with task goals; no ambiguity in evaluation.
ratings.reference_solution.rating: 8.0

ratings.reference _solution.reason: Several baseline models (e.g., BERT, RoBERTa) are reported with scores; implemen-
tations exist in public repos, but not bundled as an official starter kit.

ratings.documentation.rating: 7.0

ratings.documentation.reason: Clear paper, GitHub repo, and integration with HuggingFace Datasets; full reproducibility
requires manually connecting models to dataset.

id: jet classification
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https://github.com/fastmachinelearning/fastml-science/tree/main/jet-classify
https://zenodo.org/record/6619768
https://docs.google.com/document/d/1runrcij-eoH3_lgGZ8wm2z1YbL1Qf5cSNbVbHyWFDs4

Citations:

Ratings:

Jet Classification

metric§

reference 3o
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5 Irregular Sensor Data Compression

date: 2024-05-01

version: TODO

last _updated: 2024-05

expired: unknown

valid: yes

valid _date: TODO

url:  |https://github.com/fastmachinelearning/fastml-science/tree/main/sensor-data-compression
doi: TODO

domain: Particle Physics

focus: Real-time compression of sparse sensor data with autoencoders
keywords: - compression - autoencoder - sparse data - irregular sampling

summary: This benchmark addresses lossy compression of irregularly sampled sensor data from particle detectors using
real-time autoencoder architectures, targeting latency-critical applications in physics experiments.

licensing: TODO

task types: - Compression

ai_capability measured: - Reconstruction quality - compression efficiency
metrics: - MSE - Compression ratio

models: - Autoencoder - Quantized autoencoder

ml motif: - Real-time, Image/CV

type: Benchmark

ml_task: - Unsupervised Learning

solutions: TODO

notes: Based on synthetic but realistic physics sensor data

contact.name: Ben Hawks, Nhan Tran

contact.email: unknown

datasets.links.name: Custom synthetic irregular sensor dataset
datasets.links.url: |https://github.com/fastmachinelearning/fastml-science/tree/main/sensor-data-compression
results.links.name: ChatGPT LLM

fair.reproducible: True

fair.benchmark ready: True

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 8.0

ratings.specification.reason: Classification is clearly defined for real-time inference on simulated LHC jets. Input features
(HLFs) are documented, though exact latency or resource constraints are not numerically specified.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Two datasets (OpenML and Zenodo) are public, well-formatted, and documented; FAIR principles
are followed, though richer metadata would raise confidence to a 10.

ratings.metrics.rating: 9.0

ratings.metrics.reason: AUC and Accuracy are standard, quantitative, and well-aligned with goals of jet tagging and
inference efficiency.

ratings.reference solution.rating: 8.0

ratings.reference solution.reason: Float and quantized Keras/QKeras models are provided with results. Reproducibility
is good, though full automation and documentation could be improved.

ratings.documentation.rating: 8.0

ratings.documentation.reason: GitHub contains baseline code, data loaders, and references, but setup for deployment
(e.g., FPGA pipeline) requires familiarity with the tooling.

id: irregular sensor data compression

Citations: [2]
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Ratings:

Irregular Sensor Data Compression

pecification

metrics

reference
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6 Beam Control

date: 2024-05-01

version: TODO

last _updated: 2024-05

expired: unknown

valid: yes

valid _date: TODO

url: |https://github.com/fastmachinelearning/fastml-science/tree /main/beam-control
doi: TODO

domain: Accelerators and Magnets

focus: Reinforcement learning control of accelerator beam position
keywords: - RL - beam stabilization - control systems - simulation

summary: Beam Control explores real-time reinforcement learning strategies for maintaining stable beam trajectories in
particle accelerators. The benchmark is based on the BOOSTR environment for accelerator simulation.

licensing: TODO

task types: - Control

ai_capability measured: - Policy performance in simulated accelerator control
metrics: - Stability - Control loss

models: - DDPG - PPO (planned)

ml_motif: - Real-time, RL

type: Benchmark

ml_task: - Reinforcement Learning

solutions: TODO

notes: Environment defined, baseline RL implementation is in progress
contact.name: Ben Hawks, Nhan Tran

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: in progress

fair.benchmark ready: in progress

ratings.software.rating: 0

ratings.software.reason: Not analyzed.
ratings.specification.rating: 9.0

ratings.specification.reason: Task is well defined (real-time compression of sparse, irregular sensor data using autoen-
coders); latency constraints are implied but not fully quantified.

ratings.dataset.rating: 8.0

ratings.dataset.reason: Dataset is custom and synthetic but described well; FAIR-compliance is partial (reusable and
accessible, but not externally versioned with rich metadata).

ratings.metrics.rating: 9.0

ratings.metrics.reason: Uses standard quantitative metrics (MSE, compression ratio) clearly aligned with compression and
reconstruction goals.

ratings.reference solution.rating: 7.0

ratings.reference solution.reason: Bascline (autoencoder and quantized variant) is provided, but training/inference
pipeline is minimally documented and needs user setup.

ratings.documentation.rating: 8.0

ratings.documentation.reason: GitHub repo contains core components, but more structured setup instructions and pre-
trained weights would improve usability.

id: beam control
Citations: |[2], |3]
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Ratings:

metric§
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7 Ultrafast jet classification at the HL-LHC

date: 2024-07-08

version: TODO

last _updated: 2024-07

expired: unknown

valid: yes

valid _date: TODO

url:  |https://arxiv.org/pdf/2402.01876

doi: TODO

domain: Particle Physics

focus: FPGA-optimized real-time jet origin classification at the HL-LHC
keywords: - jet classification - FPGA - quantization-aware training - Deep Sets - Interaction Networks

summary: Demonstrates three ML models (MLP, Deep Sets, Interaction Networks) optimized for FPGA deployment with
O(100 ns) inference using quantized models and hls4ml, targeting real-time jet tagging in the L1 trigger environment at the
high-luminosity LHC. Data is available on Zenodo DOI:10.5281/zenodo.3602260. :contentReference|oaicite:1]{index=1}

licensing: TODO
task types: - Classification

ai_capability measured: - Real-time inference under FPGA constraints
metrics: - Accuracy - Latency - Resource utilization

models: - MLP - Deep Sets - Interaction Network

ml_motif: - Real-time

type: Model

ml task: - Supervised Learning

solutions: TODO

notes: Uses quantization-aware training; hardware synthesis evaluated via hls4ml
contact.name: Patrick Odagiu

contact.email: unknown

datasets.links.name: Zenodo dataset

datasets.links.url: |https://zenodo.org/records/3602260

results.links.name: ChatGPT LLM

results.links.url: |https://docs.google.com/document/d/1gDf1CIYtfmfZ9urvljCRZMYz 3WwEETkugUC650ZBdw,
fair.reproducible: True

fair.benchmark ready: False

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 8.0

ratings.specification.reason: Task is clear (RL control of beam stability), with BOOSTR-based simulator; control objectives
are well motivated, but system constraints and reward structure are still under refinement.

ratings.dataset.rating: 7.0

ratings.dataset.reason: BOOSTR dataset exists and is cited, but integration into the benchmark is in early stages; metadata
and FAIR structure are limited.

ratings.metrics.rating: 7.0

ratings.metrics.reason: Stability and control loss are mentioned, but metrics are not yet formalized with clear definitions
or baselines.

ratings.reference_solution.rating: 5.5

ratings.reference solution.reason: DDPG baseline mentioned; PPO planned; implementation is still in progress with no
reproducible results available yet.

ratings.documentation.rating: 6.0

ratings.documentation.reason: GitHub has a defined structure but is incomplete; setup and execution instructions for
training/evaluation are not fully established.

id: wultrafast jet classification at the hl-lhc
Citations: [4]
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Ratings:

Ultrafast jet classification at the HL-LHC

reference
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8 Quench detection

date: 2024-10-15

version: TODO

last _updated: 2024-10

expired: unknown

valid: yes

valid _date: TODO

url:  |https://indico.cern.ch/event/1387540/contributions/6153618 /attachments/2948441/5182077 /fast ml magnets 2024 final.pdf
doi: TODO

domain: Accelerators and Magnets

focus: Real-time detection of superconducting magnet quenches using ML
keywords: - quench detection - autoencoder - anomaly detection - real-time

summary: FExploration of real-time quench detection using unsupervised and RL approaches, combining multi-modal sensor
data (BPM, power supply, acoustic), operating on kHz-MHz streams with anomaly detection and frequency-domain features.
:contentReference|oaicite:2]{index=2}

licensing: TODO

task types: - Anomaly detection - Quench localization

ai_capability measured: - Real-time anomaly detection with multi-modal sensors
metrics: - ROC-AUC - Detection latency

models: - Autoencoder - RL agents (in development)

ml_motif: - Real-time, RL

type: Benchmark

ml _task: - Reinforcement + Unsupervised Learning

solutions: TODO

notes: Precursor detection in progress; multi-modal and dynamic weighting methods
contact.name: Maira Khan

contact.email: unknown

datasets.links.name: BPM and power supply data from BNL
results.links.name: ChatGPT LLM

fair.reproducible: in progress

fair.benchmark ready: False

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 10.0

ratings.specification.reason: Real-time jet origin classification under FPGA constraints is clearly defined, with explicit
latency targets (7100 ns) and I/O formats.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Data available on Zenodo with DOI, includes constituent-level jets; accessible and well-documented,
though not deeply versioned with full FAIR metadata.

ratings.metrics.rating: 10.0

ratings.metrics.reason: Accuracy, latency, and hardware resource usage (LUTs, DSPs) are rigorously measured and aligned
with real-time goals.

ratings.reference_solution.rating: 9.0

ratings.reference _solution.reason: Includes models (MLP, Deep Sets, Interaction Networks) with quantization-aware
training and synthesis results via hlsdml; reproducible but tightly coupled with specific toolchains.

ratings.documentation.rating: 8.0

ratings.documentation.reason: Paper and code (via hls4ml) are sufficient, but a centralized, standalone repo for repro-
ducing all models would enhance accessibility.

id: quench detection
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9 DUNE

date: 2024-10-15

version: TODO

last _updated: 2024-10

expired: unknown

valid: yes

valid _date: TODO

url: |https://indico.fnal.gov/event/66520/contributions/301423/attachments/182439/250508 /fast ml dunedaq sonic 10 15 24.pdf
doi: TODO

domain: Particle Physics

focus: Real-time ML for DUNE DAQ time-series data
keywords: - DUNE - time-series - real-time - trigger

summary: Applying real-time ML methods to time-series data from DUNE detectors, exploring trigger-level anomaly detec-
tion and event selection with low latency constraints.

licensing: TODO

task types: - Trigger selection - Time-series anomaly detection
ai_capability measured: - Low-latency event detection
metrics: - Detection efficiency - Latency

models: - CNN - LSTM (planned)

ml_motif: - Real-time, Time-series

type: Benchmark (in progress)

ml_task: - Supervised Learning

solutions: TODO

notes: Prototype models demonstrated on SONIC platform
contact.name: Andrew J. Morgan

contact.email: unknown

datasets.links.name: DUNE SONIC data
results.links.name: ChatGPT LLM

fair.reproducible: in progress

fair.benchmark ready: False
ratings.software.rating: 0

ratings.software.reason: Not analyzed.
ratings.specification.rating: 8.0

ratings.specification.reason: Task (quench detection via anomaly detection) is clearly described; multi-modal sensors,
streaming rates, and objective are provided, but constraints (latency thresholds) are qualitative.

ratings.dataset.rating: 7.0

ratings.dataset.reason: Custom dataset using real data from BNL; HDF5 formatted and structured, but access may be
internal or limited, and not versioned for public FAIR use.

ratings.metrics.rating: 8.0

ratings.metrics.reason: ROC-AUC and detection latency are defined; relevant and quantitative but not yet paired with
benchmark baselines.

ratings.reference solution.rating: 6.0

ratings.reference solution.reason: Autoencoder prototype exists; RL methods are in development; no fully reproducible
pipeline is available yet.

ratings.documentation.rating: 7.0

ratings.documentation.reason: Slides and GDocs outline results; implementation is in progress with limited setup/code
release.

id: dune

Citations: |[5]
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Ratings:

reference

DUNE
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10 Intelligent experiments through real-time AI

date: 2025-01-08

version: TODO

last _updated: 2025-01

expired: unknown

valid: yes

valid _date: TODO

url:  |https://arxiv.org/pdf/2501.04845

doi: TODO

domain: Instrumentation and Detectors; Nuclear Physics; Particle Physics

focus: Real-time FPGA-based triggering and detector control for sPHENIX and future EIC
keywords: - FPGA - Graph Neural Network - hls4ml - real-time inference - detector control

summary: Resaerch and Development demonstrator for real-time processing of high-rate tracking data from the sSPHENIX
detector (RHIC) and future EIC systems. Uses GNNs with hls4ml for FPGA-based trigger generation to identify rare events
(heavy flavor, DIS electrons) within 10 micros latency. Demonstrated improved accuracy and latency on Alveo/FELIX platforms.

licensing: TODO

task types: - Trigger classification - Detector control - Real-time inference

ai_capability measured: - Low-latency GNN inference on FPGA

metrics: - Accuracy (charm and beauty detection) - Latency (micros) - Resource utilization (LUT/FF/BRAM/DSP)
models: - Bipartite Graph Network with Set Transformers (BGN-ST) - GarNet (edge-classifier)

ml_motif: - Real-time

type: Model

ml task: - Supervised Learning

solutions: TODO

notes: Achieved 797.4% accuracy for beauty decay triggers; sub-10 micros latency on Alveo U280; hit-based FPGA design
via hls4ml and FlowGNN.

contact.name: Jakub Kvapil (lanl.gov)

contact.email: unknown

datasets.links.name: Internal simulated tracking data (sSPHENIX and EIC DIS-electron tagger)
results.links.name: ChatGPT LLM

fair.reproducible: True

fair.benchmark ready: False

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 8.0

ratings.specification.reason: Task (trigger-level anomaly detection) is clearly defined for low-latency streaming input, but
the problem framing lacks complete architectural/system specs.

ratings.dataset.rating: 6.0

ratings.dataset.reason: Internal DUNE SONIC data; not publicly released and no formal FAIR support; replicability is
institutionally gated.

ratings.metrics.rating: 7.0

ratings.metrics.reason: Metrics include detection efficiency and latency, which are relevant, but only lightly supported by
baselines or formal eval scripts.

ratings.reference solution.rating: 5.0

ratings.reference solution.reason: One CNN prototype demonstrated; LSTM planned. No public implementation or
ready-to-run example yet.

ratings.documentation.rating: 6.0

ratings.documentation.reason: Slides and some internal documentation exist, but no full pipeline or public GitHub repo
yet.

id: intelligent experiments through real-time ai
Citations: |[6]
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Ratings:

Intelligent experiments through real-time Al

pecification

reference
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11 Neural Architecture Codesign for Fast Physics Applications

date: 2025-01-09

version: TODO

last _updated: 2025-01

expired: unknown

valid: yes

valid _date: TODO

url:  |https://arxiv.org/abs/2501.05515

doi: TODO

domain: Physics; Materials Science; Particle Physics

focus: Automated neural architecture search and hardware-efficient model codesign for fast physics applications
keywords: - neural architecture search - FPGA deployment - quantization - pruning - hls4ml

summary: Introduces a two-stage neural architecture codesign (NAC) pipeline combining global and local search,
quantization-aware training, and pruning to design efficient models for fast Bragg peak finding and jet classification, syn-
thesized for FPGA deployment with hls4ml. Achieves >30x reduction in BOPs and sub-100 ns inference latency on FPGA.

licensing: TODO

task types: - Classification - Peak finding

ai_capability measured: - Hardware-aware model optimization; low-latency inference
metrics: - Accuracy - Latency - Resource utilization

models: - NAC-based BraggNN - NAC-optimized Deep Sets (jet)

ml _motif: - Real-time, Image/CV

type: Framework

ml task: - Supervised Learning

solutions: TODO

notes: Demonstrated two case studies (materials science, HEP); pipeline and code open-sourced.
contact.name: Jason Weitz (UCSD), Nhan Tran (FNAL)

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes (nac-opt, hls4ml)

fair.benchmark ready: False

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 10.0

ratings.specification.reason: Task is clearly defined (triggering on rare events with sub-10 micros latency); architecture,
constraints, and system context (FPGA, Alveo) are well detailed.

ratings.dataset.rating: 7.0

ratings.dataset.reason: Simulated tracking data from sPHENIX and EIC; internally structured but not yet released in a
public FAIR-compliant format.

ratings.metrics.rating: 10.0

ratings.metrics.reason: Accuracy, latency, and hardware resource utilization (LUTs, DSPs) are clearly defined and used in
evaluation.

ratings.reference_solution.rating: 9.0

ratings.reference _solution.reason: Graph-based models (BGN-ST, GarNet) are implemented and tested on real hardware;
reproducibility possible with hls4dml but full scripts not bundled.

ratings.documentation.rating: 8.0

ratings.documentation.reason: Paper is detailed and tool usage (FlowGNN, hls4ml) is described, but repo release and
dataset access remain in progress.

id: neural architecture codesign for fast physics applications
Citations: |[7]
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Ratings:

Neural Architecture Codesign for Fast Physics Applications.
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12 Smart Pixels for LHC

date: 2024-06-24

version: TODO

last _updated: 2024-06

expired: unknown

valid: yes

valid _date: TODO

url:  |https://arxiv.org/abs/2406.14860

doi: TODO

domain: Particle Physics; Instrumentation and Detectors

focus: On-sensor, in-pixel ML filtering for high-rate LHC pixel detectors
keywords: - smart pixel - on-sensor inference - data reduction - trigger

summary: Presents a 256x256-pixel ROIC in 28 nm CMOS with embedded 2-layer NN for cluster filtering at 25 ns, achieving
54-75% data reduction while maintaining noise and latency constraints. Prototype consumes ~300 microW /pixel and operates
in combinatorial digital logic.

licensing: TODO

task types: - Image Classification - Data filtering

ai_capability measured: - On-chip - low-power inference; data reduction
metrics: - Data rejection rate - Power per pixel

models: - 2-layer pixel NN

ml _motif: - Real-time, Image/CV

type: Benchmark

ml task: - Image Classification

solutions: TODO

notes: Prototype in CMOS 28 nm; proof-of-concept for Phase III pixel upgrades.
contact.name: Lindsey Gray; Jennet Dickinson

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: True

fair.benchmark ready: Yes (Zenodo:7331128)
ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Task (automated neural architecture search for real-time physics) is well formulated with clear
latency, model compression, and deployment goals.

ratings.dataset.rating: 6.0

ratings.dataset.reason: Internal Bragg and jet datasets used; not publicly hosted or FAIR-compliant, though mentioned in
the paper.

ratings.metrics.rating: 10.0
ratings.metrics.reason: BOP reduction, latency, and accuracy are all quantitatively evaluated.
ratings.reference solution.rating: 8.0

ratings.reference solution.reason: NAC-generated models for Bragg peak and jet classification are described, but pipeline
requires integration of several tools and is not fully packaged.

ratings.documentation.rating: 7.0

ratings.documentation.reason: NAC pipeline, hls4ml usage, and results are discussed; code (e.g., nac-opt) referenced, but
replication requires stitching together toolchain and data.

id: smart pixels for lhc
Citations: 3|
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Ratings:

Smart Pixels for LHC

reference
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13 HEDM (BraggNN)

date: 2023-10-03

version: TODO

last _updated: 2023-10

expired: unknown

valid: yes

valid _date: TODO

url: |https://arxiv.org/abs,/2008.08198

doi: TODO

domain: Material Science

focus: Fast Bragg peak analysis using deep learning in diffraction microscopy
keywords: - BraggNN - diffraction - peak finding - HEDM

summary: Uses BraggNN, a deep neural network, for rapid Bragg peak localization in high-energy diffraction microscopy,
achieving about 13x speedup compared to Voigt-based methods while maintaining sub-pixel accuracy.

licensing: TODO

task types: - Peak detection

ai_capability measured: - High-throughput peak localization
metrics: - Localization accuracy - Inference time

models: - BraggNN

ml_motif: - Real-time, Image/CV

type: Framework

ml_task: - Peak finding

solutions: TODO

notes: Enables real-time HEDM workflows; basis for NAC case study.
contact.name: Jason Weitz (UCSD)

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: True

fair.benchmark ready: True

ratings.software.rating: 0

ratings.software.reason: Not analyzed.
ratings.specification.rating: 10.0

ratings.specification.reason: Fully specified: describes task (data filtering/classification, system design (on-sensor infer-
ence), latency (25 ns), and power constraints.

ratings.dataset.rating: 8.0

ratings.dataset.reason: In-pixel charge cluster data used, but dataset release info is minimal; FAIR metadata/versioning
limited.

ratings.metrics.rating: 9.0
ratings.metrics.reason: Data rejection rate and power per pixel are clearly defined and directly tied to hardware goals.
ratings.reference _solution.rating: 9.0

ratings.reference _solution.reason: 2-layer NN implementation is evaluated in hardware; reproducible via hlsdml flow
with results in paper.

ratings.documentation.rating: 8.0

ratings.documentation.reason: Paper is clear; Zenodo asset is referenced, but additional GitHub or setup repo would
improve reproducibility.

id: hedm_braggnn
Citations: [9]
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Ratings:

HEDM (BraggNN)

reference
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14 4D-STEM

date: 2023-12-03

version: TODO

last _updated: 2023-12

expired: unknown

valid: yes

valid _date: TODO

url: |https://openreview.net/pdf?id=7yt3N0oOW9

doi: TODO

domain: Material Science

focus: Real-time ML for scanning transmission electron microscopy
keywords: - 4D-STEM - electron microscopy - real-time - image processing

summary: Proposes ML methods for real-time analysis of 4D scanning transmission electron microscopy datasets; framework
details in progress.

licensing: TODO

task types: - Image Classification - Streamed data inference
ai_capability measured: - Real-time large-scale microscopy inference
metrics: - Classification accuracy - Throughput

models: - CNN models (prototype)

ml motif: - Real-time, Image/CV
type: Model

ml_task: - Image Classification
solutions: TODO

notes: In-progress; model design under development.
contact.name: unknown
contact.email: unknown
results.links.name: ChatGPT LLM
fair.reproducible: in progress
fair.benchmark ready: False
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 9.0

ratings.specification.reason: Peak localization task is well-defined for diffraction images; input/output described clearly,
but no system constraints.

ratings.dataset.rating: 8.0

ratings.dataset.reason: Simulated diffraction images provided; reusable and downloadable, but not externally versioned or
FAIR-structured.

ratings.metrics.rating: 9.0
ratings.metrics.reason: Inference speed and localization accuracy are standard and quantitatively reported.
ratings.reference _solution.rating: 8.0

ratings.reference _solution.reason: BraggNN model and training pipeline exist, but need stitching from separate reposi-
tories.

ratings.documentation.rating: 8.0

ratings.documentation.reason: Paper and codebase are available and usable, though not fully turnkey.
id: d-stem

Citations: [10]
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Ratings:

metricé

reference
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15 In-Situ High-Speed Computer Vision

date: 2023-12-05

version: TODO

last _updated: 2023-12

expired: unknown

valid: yes

valid _date: TODO

url:  |https://arxiv.org/abs/2312.00128

doi: TODO

domain: Fusion/Plasma

focus: Real-time image classification for in-situ plasma diagnostics
keywords: - plasma - in-situ vision - real-time ML

summary: Applies low-latency CNN models for image classification of plasma diagnostics streams; supports deployment on
embedded platforms.

licensing: TODO

task types: - Image Classification

ai capability measured: - Real-time diagnostic inference
metrics: - Accuracy - FPS

models: - CNN

ml motif: - Real-time, Image/CV

type: Model

ml_task: - Image Classification

solutions: TODO

notes: Embedded/deployment details in progress.
contact.name: unknown

contact.email: unknown

results.links.name: ChatGPT LLM

results.links.url: |https://docs.google.com/document/d/1EqkRHuQslyQqMvZs L6p9JAy2vKX50CTubzttFBuRoQ/edit?usp=sharing
fair.reproducible: in progress

fair.benchmark ready: False

ratings.software.rating: 0

ratings.software.reason: Not analyzed.
ratings.specification.rating: 7.0

ratings.specification.reason: General task defined (real-time microscopy inference), but no standardized 1/O format, la-
tency constraint, or complete problem framing yet.

ratings.dataset.rating: 0.0

ratings.dataset.reason: Dataset not provided or described in any formal way.

ratings.metrics.rating: 6.0

ratings.metrics.reason: Mentions throughput and accuracy, but metrics are not formally defined or benchmarked.
ratings.reference solution.rating: 2.0

ratings.reference solution.reason: Prototype CNNs described; no baseline or implementation released.
ratings.documentation.rating: 5.0

ratings.documentation.reason: OpenReview paper and Gemini doc give some insight, but no working code, environment,
or example.

id: in-situ_high-speed computer vision
Citations: |[11]
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Ratings:

In-Situ High-Speed Computer Vision
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16 BenchCouncil AIBench

date: 2020-01-01

version: TODO

last _updated: 2020-01

expired: unknown

valid: yes

valid _date: TODO

url:  |https://www.benchcouncil.org/AIBench/

doi: TODO

domain: General

focus: End-to-end AI benchmarking across micro, component, and application levels
keywords: - benchmarking - Al systems - application-level evaluation

summary: AlBench is a comprehensive benchmark suite that evaluates AI workloads at different levels (micro, component,
application) across hardware systems-covering image generation, object detection, translation, recommendation, video predic-
tion, etc.

licensing: TODO
task types: - Training - Inference - End-to-end AI workloads

ai__capability measured: - System-level Al workload performance
metrics: - Throughput - Latency - Accuracy

models: - ResNet - BERT - GANs - Recommendation systems

ml_ motif: - General

type: Benchmark

ml _task: - NA

solutions: TODO

notes: Covers scenario-distilling, micro, component, and end-to-end benchmarks.
contact.name: Wanling Gao (BenchCouncil)
contact.email: unknown
results.links.name: ChatGPT LLM
fair.reproducible: Yes

fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 8.0

ratings.specification.reason: Task (plasma diagnostic classification) and real-time deployment described; system specs
(FPS targets) implied but not fully quantified.

ratings.dataset.rating: 6.0

ratings.dataset.reason: Dataset is sensor stream-based but not shared or FAIR-documented.
ratings.metrics.rating: 8.0

ratings.metrics.reason: FPS and classification accuracy reported and relevant.
ratings.reference _solution.rating: 7.0

ratings.reference _solution.reason: CNN model described and evaluated, but public implementation and benchmarks are
not available yet.

ratings.documentation.rating: 6.0

ratings.documentation.reason: Paper and Gemini doc exist, but full setup instructions and tools are still in progress.
id: benchcouncil aibench

Citations: [12]
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Ratings:
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17 BenchCouncil BigDataBench

date: 2020-01-01

version: TODO

last _updated: 2020-01

expired: unknown

valid: yes

valid _date: TODO

url:  |https://www.benchcouncil.org/BigDataBench/

doi: TODO

domain: General

focus: Big data and AI benchmarking across structured, semi-structured, and unstructured data workloads
keywords: - big data - AI benchmarking - data analytics

summary: BigDataBench provides benchmarks for evaluating big data and AI workloads with realistic datasets (13 sources)
and pipelines across analytics, graph, warehouse, NoSQL, streaming, and Al

licensing: TODO

task types: - Data preprocessing - Inference - End-to-end data pipelines

ai_capability measured: - Data processing and Al model inference performance at scale
metrics: - Data throughput - Latency - Accuracy

models: - CNN - LSTM - SVM - XGBoost

ml_motif: - General

type: Benchmark

ml_task: - NA

solutions: TODO

notes: Built on eight data motifs; provides Hadoop, Spark, Flink, MPI implementations.
contact.name: Jianfeng Zhan (BenchCouncil)

contact.email: unknown

results.links.name: ChatGPT LLM

results.links.url: |https://docs.google.com/document/d/1VFRxhR2G5A83S8PqKBrP99LLVgcCGvX2W W4vTtwxmQ4/edit?usp=sharing
fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Evaluates Al at multiple levels (micro to end-to-end); tasks and workloads are clearly defined,
though specific I/O formats and constraints vary.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Realistic datasets across diverse domains; FAIR structure for many components, but individual
datasets may not all be versioned or richly annotated.

ratings.metrics.rating: 9.0

ratings.metrics.reason: Latency, throughput, and accuracy clearly defined for end-to-end tasks; consistent across models
and setups.

ratings.reference solution.rating: 8.0

ratings.reference solution.reason: Reference implementations for several tasks exist, but setup across all tasks is complex
and not fully streamlined.

ratings.documentation.rating: 8.0

ratings.documentation.reason: Central documentation exists, with detailed component breakdowns; environment setup
across platforms (e.g., hardware variations) can require manual adjustment.

id: benchcouncil bigdatabench
Citations: [13|
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Ratings:
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18 MLPerf HPC

date: 2021-10-20

version: TODO

last _updated: 2021-10

expired: unknown

valid: yes

valid _date: TODO

url:  |https://github.com/mlcommons/hpc

doi: TODO

domain: Cosmology, Climate, Protein Structure, Catalysis
focus: Scientific ML training and inference on HPC systems
keywords: - HPC - training - inference - scientific ML

summary: MLPerf HPC introduces scientific model benchmarks (e.g., CosmoFlow, DeepCAM) aimed at large-scale HPC
evaluation with >10x performance scaling through system-level optimizations.

licensing: TODO

task types: - Training - Inference
ai_capability measured: - Scaling efficiency - training time - model accuracy on HPC
metrics: - Training time - Accuracy - GPU utilization

models: - CosmoFlow - DeepCAM - OpenCatalyst
ml_motif: - HPC/inference, HPC/training

type: Framework

ml_task: - NA

solutions: TODO

notes: Shared framework with MLCommons Science; reference implementations included.
contact.name: Steven Farrell (MLCommons)
contact.email: unknown

results.links.name: ChatGPT LLM
fair.reproducible: Yes

fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 9.0

ratings.specification.reason: Focused on structured/unstructured data pipelines; clearly defined tasks spanning analytics
to Al; some scenarios lack hardware constraint modeling.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Built from 13 real-world sources; structured for realistic big data scenarios; partially FAIR-
compliant with documented data motifs.

ratings.metrics.rating: 9.0
ratings.metrics.reason: Covers data throughput, latency, and accuracy; quantitative and benchmark-ready.
ratings.reference _solution.rating: 8.0

ratings.reference solution.reason: Many pipeline and model examples provided using Hadoop/Spark/Flink; setup effort
varies by task and platform.

ratings.documentation.rating: 8.0

ratings.documentation.reason: Strong documentation with examples and task specifications; centralized support exists,
but task-specific tuning may require domain expertise.

id: mlperf hpc
Citations: [14]
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Ratings:

metrics

reference
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19 MLCommons Science

date: 2023-06-01

version: TODO

last _updated: 2023-06

expired: unknown

valid: yes

valid _date: TODO

url:  |https://github.com/mlcommons/science

doi: TODO

domain: Earthquake, Satellite Image, Drug Discovery, Electron Microscope, CFD
focus: Al benchmarks for scientific applications including time-series, imaging, and simulation
keywords: - science Al - benchmark - MLCommons - HPC

summary: MLCommons Science assembles benchmark tasks with datasets, targets, and implementations across earthquake
forecasting, satellite imagery, drug screening, electron microscopy, and CFD to drive scientific ML reproducibility.

licensing: TODO

task types: - Time-series analysis - Image classification - Simulation surrogate modeling
ai_capability measured: - Inference accuracy - simulation speed-up - generalization
metrics: - MAE - Accuracy - Speedup vs simulation

models: - CNN - GNN - Transformer

ml motif: - Time-series, Image/CV, HPC/inference
type: Framework

ml_task: - NA

solutions: TODO

notes: Joint national-lab effort under Apache-2.0 license.
contact.name: MLCommons Science Working Group
contact.email: unknown

results.links.name: ChatGPT LLM
fair.reproducible: Yes

fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 10.0

ratings.specification.reason: Scientific ML tasks (e.g., CosmoFlow, DeepCAM) are clearly defined with HPC system-level
constraints and targets.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Public scientific datasets (e.g., cosmology, weather); used consistently, though FAIR-compliance of
individual datasets varies slightly.

ratings.metrics.rating: 10.0

ratings.metrics.reason: Training time, GPU utilization, and accuracy are all directly measured and benchmarked across
HPC systems.

ratings.reference solution.rating: 9.0

ratings.reference solution.reason: Reference implementations available and actively maintained; HPC setup may require
domain-specific environment.

ratings.documentation.rating: 9.0

ratings.documentation.reason: GitHub repo and papers provide detailed instructions; reproducibility supported across
multiple institutions.

id: mlcommons_science
Citations: [15]
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Ratings:

MLCommons Science
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20 LHC New Physics Dataset

date: 2021-07-05

version: TODO

last _updated: 2021-07

expired: unknown

valid: yes

valid _date: TODO

url:  |https://arxiv.org/pdf/2107.02157

doi: TODO

domain: Particle Physics; Real-time Triggering

focus: Real-time LHC event filtering for anomaly detection using proton collision data
keywords: - anomaly detection - proton collision - real-time inference - event filtering - unsupervised ML

summary: A dataset of proton-proton collision events emulating a 40 MHz real-time data stream from LHC detectors, pre-
filtered on electron or muon presence. Designed for unsupervised new-physics detection algorithms under latency /bandwidth
constraints.

licensing: TODO

task types: - Anomaly detection - Event classification

ai_capability measured: - Unsupervised signal detection under latency and bandwidth constraints
metrics: - ROC-AUC - Detection efficiency

models: - Autoencoder - Variational autoencoder - Isolation forest

ml _motif: - Multiple

type: Framework

ml _task: - NA

solutions: TODO

notes: Includes electron/muon-filtered background and black-box signal benchmarks; 1M events per black box.
contact.name: Ema Puljak (ema.puljak@cern.ch)

contact.email: unknown

datasets.links.name: Zenodo stores, background + 3 black-box signal sets. 1M events each
results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analysed.

ratings.specification.rating: 7.0

ratings.specification.reason: The problem (anomaly detection for new physics at LHC) is clearly described with goals and
background, but lacks a formal task specification or constraints.

ratings.dataset.rating: 8.0

ratings.dataset.reason: Large-scale, public dataset derived from LHC simulations; well-documented and available via Zen-
odo.

ratings.metrics.rating: 7.0

ratings.metrics.reason: Provides AUROC, accuracy, and anomaly detection metrics but lacks standardized evaluation
script.

ratings.reference_solution.rating: 5.0

ratings.reference solution.reason: Baseline models (autoencoders, GANs) are described in associated papers, but imple-
mentations vary across papers.

ratings.documentation.rating: 6.0

ratings.documentation.reason: Publicly available papers and datasets with descriptions, but no unified README or
training setup.

id: lhc_new_physics dataset
Citations: |[16]
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Ratings:

LHC New Physics Dataset

reference
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21 MLCommons Medical Al

date: 2023-07-17

version: TODO

last _updated: 2023-07

expired: unknown

valid: yes

valid _date: TODO

url: |https://github.com/mlcommons/medical

doi: TODO

domain: Healthcare; Medical Al

focus: Federated benchmarking and evaluation of medical Al models across diverse real-world clinical data

keywords: - medical Al - federated evaluation - privacy-preserving - fairness - healthcare benchmarks

summary: The MLCommons Medical AI working group develops benchmarks, best practices, and platforms (MedPerf,
GaNDLF, COFE) to accelerate robust, privacy-preserving AI development for healthcare. MedPerf enables federated test-
ing of clinical models on diverse datasets, improving generalizability and equity while keeping data onsite :contentRefer-
ence|oaicite:1]{index=1}.

licensing: TODO

task types: - Federated evaluation - Model validation

ai_capability measured: - Clinical accuracy - fairness - generalizability - privacy compliance

metrics: - ROC AUC - Accuracy - Fairness metrics

models: - MedPerf-validated CNNs - GaNDLF workflows

ml_motif: - Multiple

type: Platform

ml task: - NA

solutions: TODO

notes: Open-source platform under Apache-2.0; used across 20+ institutions and hospitals :contentRefer-
ence|oaicite:2]{index=2}.

contact.name: Alex Karargyris (MLCommons Medical AI)

contact.email: unknown

datasets.links.name: Multi-institutional clinical datasets, radiology

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Diverse scientific tasks (earthquake, CFD, microscopy) with detailed problem statements and
goals; system constraints not uniformly applied.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Domain-specific datasets (e.g., microscopy, climate); mostly public and structured, but FAIR an-
notations are not always explicit.

ratings.metrics.rating: 9.0
ratings.metrics.reason: Task-specific metrics (MAE, speedup, accuracy) are clear and reproducible.
ratings.reference solution.rating: 9.0

ratings.reference solution.reason: Reference models (CNN, GNN, Transformer) provided with training/evaluation
pipelines.

ratings.documentation.rating: 9.0

ratings.documentation.reason: Well-documented, open-sourced, and maintained with examples; strong community sup-
port and reproducibility focus.

id: mlcommons medical ai
Citations: [17]
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Ratings:

MLCommons Medical Al

metrics

reference

55



22 CaloChallenge 2022

date:

version:

2024-10-28
TODO
last _updated: 2024-10
expired: unknown
valid: yes
valid _date: TODO
url:
doi:

domain:

TODO

focus:

keywords:

http://arxiv.org/abs/2410.21611

LHC Calorimeter; Particle Physics
Fast generative-model-based calorimeter shower simulation evaluation

- calorimeter simulation - generative models - surrogate modeling - LHC - fast simulation

summary: The Fast Calorimeter Simulation Challenge 2022 assessed 31 generative-model submissions (VAEs, GANs, Flows,
Diffusion) on four calorimeter shower datasets; benchmarking shower quality, generation speed, and model complexity :con-
tentReference|oaicite:3]{index=3}.

licensing: TODO

task types: - Surrogate

ai_capability measured:

metrics:

models:

modeling

- Simulation fidelity - speed - efficiency

- Histogram similarity - Classifier AUC - Generation latency
- VAE variants - GAN variants - Normalizing flows - Diffusion models

The most comprehensive survey to date on ML-based calorimeter simulation; 31 submissions over different dataset

Krause (CaloChallenge Lead)

ml_motif: - Surrogate

type: Dataset

ml _task: - Surrogate Modeling
solutions: TODO

notes:

sizes.

contact.name: Claudius
contact.email: unknown

datasets.links.name:

Four LHC calorimeter shower datasets

datasets.links.url:
results.links.name:
Yes

fair.benchmark _ready:

fair.reproducible:

ratings.software.rating:

ratings.software.reason:

ratings.specification.rating:

ratings.specification.reason:

o I itond
ChatGPT LLM

Yes

0

Not analyzed.
9.0

Task is clearly defined: real-time anomaly detection from high-rate LHC collisions. Latency

and bandwidth constraints are mentioned, though not numerically enforced.

ratings.dataset.rating:

ratings.dataset.reason:
fully FAIR.

ratings.metrics.rating:

ratings.metrics.reason:
detection.

ratings.reference solution.rating:

ratings.reference solution.reason:

9.0

Publicly available via Zenodo, with structured signal /background splits, and rich metadata; nearly

9.0
ROC-AUC and detection efficiency are clearly defined and appropriate for unsupervised anomaly

8.0
Several baseline methods (autoencoder, VAE, isolation forest) are evaluated; runnable

versions available via community repos but not tightly bundled.

ratings.documentation.rating:

ratings.documentation.reason:

8.0

Paper and data documentation are clear, and the dataset is widely reused. Setup requires

some manual effort to reproduce full pipelines.

id:
Citations:

calochallenge
(18]
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Ratings:

CaloChallenge 2022
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23 Papers With Code (SOTA Platform)

date: ongoing

version: TODO

last _updated: 2025-06

expired: unknown

valid: yes

valid _date: TODO

url: |https://paperswithcode.com/sota

doi: TODO

domain: General ML; All domains

focus: Open platform tracking state-of-the-art results, benchmarks, and implementations across ML tasks and papers
keywords: - leaderboard - benchmarking - reproducibility - open-source

summary: Papers With Code (PWC) aggregates benchmark suites, tasks, and code across ML research: 12,423 benchmarks,
5,358 unique tasks, and 154,766 papers with code links. It tracks SOTA metrics and fosters reproducibility.

licensing: TODO

task types: - Multiple (Classification, Detection, NLP, etc.)

ai_capability measured: - Model performance across tasks (accuracy - F1 - BLEU - etc.)
metrics: - Task-specific (Accuracy, F1, BLEU, etc.)

models: - All published models with code

ml_motif: - Multiple

type: Platform

ml_task: - Multiple

solutions: TODO

notes: Community-driven open platform; automatic data extraction and versioning.
contact.name: Papers With Code Team

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Evaluation setting (federated clinical benchmarking) is well-defined; I/O interfaces vary
slightly by task but are standardized in MedPerf platform.

ratings.dataset.rating: 8.0

ratings.dataset.reason: Uses distributed, real-world clinical datasets across institutions; FAIR compliance varies across
hospitals and data hosts.

ratings.metrics.rating: 9.0

ratings.metrics.reason: ROC AUC, accuracy, and fairness metrics are explicitly defined and task-dependent; consistently
tracked across institutions.

ratings.reference solution.rating: 8.0

ratings.reference solution.reason: Validated CNNs and GaNDLF pipelines are used and shared via the MedPerf tool,
but some implementations are abstracted behind the platform.

ratings.documentation.rating: 9.0

ratings.documentation.reason: Excellent documentation across MedPerf, GaNDLF, and COFE; reproducibility handled
via containerized flows and task templates.

id: papers with code sota platform
Citations: |[19]
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Ratings:

Papers With Code (SOTA Platform)

metricé
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24 Codabench

date: 2022-01-01

version: TODO

last _updated: 2025-03

expired: unknown

valid: yes

valid _date: TODO

url: |https://www.codabench.org/

doi: TODO

domain: General ML; Multiple

focus: Open-source platform for organizing reproducible Al benchmarks and competitions
keywords: - benchmark platform - code submission - competitions - meta-benchmark

summary: Codabench (successor to CodaLab) is a flexible, easy-to-use, reproducible API platform for hosting AI benchmarks
and code-submission challenges. It supports custom scoring, inverted benchmarks, and scalable public or private queues
:contentReference|oaicite:1]{index=1}.

licensing: TODO
task types: - Multiple

ai_capability measured: - Model reproducibility - performance across datasets
metrics: - Submission count - Leaderboard ranking - Task-specific metrics
models: - Arbitrary code submissions

ml _motif: - Multiple

type: Platform

ml_task: - Multiple

solutions: TODO

notes: Hosts 51 public competitions, 726 k users, 177 k submissions :contentReference|oaicite:2]{index=2}
contact.name: Isabelle Guyon (Université Paris-Saclay)
contact.email: unknown

results.links.name: ChatGPT LLM
fair.reproducible: Yes

fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 10.0

ratings.specification.reason: Simulation task (generative calorimeter showers) is clearly stated with multiple datasets,
fidelity requirements, and performance constraints.

ratings.dataset.rating: 9.5
ratings.dataset.reason: Public datasets available in multiple sizes and formats; well-documented; not versioned
ratings.metrics.rating: 10.0

ratings.metrics.reason: Histogram similarity, classifier AUC, and generation latency are clearly defined and benchmarked
across all submissions.

ratings.reference solution.rating: 9.0

ratings.reference solution.reason: 31 model implementations submitted; some made public and reproducible, though
others remain undocumented or private.

ratings.documentation.rating: 9.0

ratings.documentation.reason: Paper, leaderboard, and Gemini doc are comprehensive; unified repo or launchable baseline
kit would push this to a 10.

id: codabench
Citations: |[20]
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Ratings:

metricé

reference
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25 Sabath (SBI-FAIR)

date: 2021-09-27

version: TODO

last _updated: 2023-07

expired: unknown

valid: yes

valid _date: TODO

url: |https://sbi-fair.github.io/docs/software/sabath/

doi: TODO

domain: Systems; Metadata

focus: FAIR metadata framework for ML-driven surrogate workflows in HPC systems
keywords: - meta-benchmark - metadata - HPC - surrogate modeling

summary: Sabath is a metadata framework from the SBI-FAIR group (UTK, Argonne, Virginia) facilitating FAIR-compliant
benchmarking and surrogate execution logging across HPC systems :contentReference|oaicite:3]{index=3}.

licensing: TODO
task types: - Systems benchmarking

ai_capability measured: - Metadata tracking - reproducible HPC workflows
metrics: - Metadata completeness - FAIR compliance

models: - N/A

ml_motif: - Systems

type: Platform
ml task: - NA
solutions: TODO

notes: Developed by PI Piotr Luszczek at UTK; integrates with MiniWeatherML, AutoPhaseNN, Cosmoflow, etc. :con-
tentReference|oaicite:4]{index=4}

contact.name: Piotr Luszczek (luszczek@utk.edu)
contact.email: unknown

results.links.name: ChatGPT LLM
fair.reproducible: Yes

fair.benchmark ready: N/A
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 8.0

ratings.specification.reason: The benchmark defines simulation-based inference (SBI) tasks clearly with FAIR principles
applied to particle physics datasets.

ratings.dataset.rating: 8.0

ratings.dataset.reason: Data is well-structured for SBI and publicly available with clear licensing.
ratings.metrics.rating: 8.0

ratings.metrics.reason: Includes likelihood and posterior accuracy; metrics well-matched to SBI.

ratings.reference _solution.rating: 7.0

ratings.reference _solution.reason: Baseline SBI models are implemented and reproducible.
ratings.documentation.rating: 6.0

ratings.documentation.reason: GitHub repo includes code and instructions, but lacks full tutorials or walkthroughs.
id: sabath _sbi-fair

Citations: [21]
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26 PDEBench

date: 2022-10-13

version: TODO

last _updated: 2025-05

expired: unknown

valid: yes

valid _date: TODO

url:  |https://github.com/pdebench/PDEBench

doi: TODO

domain: CFD; Weather Modeling

focus: Benchmark suite for ML-based surrogates solving time-dependent PDEs
keywords: - PDEs - CFD - scientific ML - surrogate modeling - NeurIPS

summary: PDEBench offers forward/inverse PDE tasks with large ready-to-use datasets and baselines (FNO, U-Net, PINN),
packaged via a unified API. It won the SimTech Best Paper Award 2023 :contentReference|oaicite:5|{index=5}.

licensing: TODO

task types: - Supervised Learning

ai_capability measured: - Time-dependent PDE modeling; physical accuracy

metrics: - RMSE - boundary RMSE - Fourier RMSE

models: - FNO - U-Net - PINN - Gradient-Based inverse methods

ml_motif: - Multiple

type: Framework

ml_task: - Supervised Learning

solutions: TODO

notes: Datasets hosted on DaRUS (DOI:10.18419/darus-2986); contact maintainers by email :contentRefer-
ence|oaicite:6]{index=6}

contact.name: Makoto Takamoto (makoto.takamoto@neclab.eu)

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Clearly defined PDE-solving tasks with well-specified constraints and solution formats.
ratings.dataset.rating: 9.0

ratings.dataset.reason: Includes synthetic and real-world PDE datasets with detailed format descriptions.
ratings.metrics.rating: 8.0

ratings.metrics.reason: Uses L2 error and other norms relevant to PDE solutions.

ratings.reference solution.rating: 7.0

ratings.reference solution.reason: Includes baseline solvers and trained models across multiple PDE tasks.
ratings.documentation.rating: 8.0

ratings.documentation.reason: Well-organized GitHub with examples, dataset loading scripts, and training configs.
id: pdebench

Citations: [22]

PDEBench

metrics software

Ratings: reference Souti
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27 The Well

date: 2024-12-03

version: TODO

last _updated: 2025-06

expired: unknown

valid: yes

valid _date: TODO

url: |https://polymathic-ai.org/the well/

doi: TODO

domain: biological systems, fluid dynamics, acoustic scattering, astrophysical MHD
focus: Foundation model + surrogate dataset spanning 16 physical simulation domains
keywords: - surrogate modeling - foundation model - physics simulations - spatiotemporal dynamics

summary: A 15 TB collection of ML-ready physics simulation datasets (HDF5), covering 16 domains-from biology to astro-
physical magnetohydrodynamic simulations-with unified API and metadata. Ideal for training surrogate and foundation models
on scientific data. :contentReference[oaicite:1|{index=1}

licensing: TODO

task types: - Supervised Learning

ai_capability measured: - Surrogate modeling - physics-based prediction
metrics: - Dataset size - Domain breadth

models: - FNO baselines - U-Net baselines

ml_ motif: - Foundation model, Surrogate

type: Dataset

ml task: - Supervised Learning

solutions: TODO

notes: Includes unified API and dataset metadata; see 2025 NeurIPS paper for full benchmark details. Size: 15 TB. :con-
tentReference|oaicite:2]{index=2}

contact.name: Wes Brewer

contact.email: unknown
datasets.links.name: 16 simulation datasets
datasets.links.url: [HDF5) via PyPI/GitHub]|
results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 7.0

ratings.specification.reason: Explores LLM understanding of mental health scenarios; framing is creative but loosely de-
fined.

ratings.dataset.rating: 6.0

ratings.dataset.reason: Dataset is described in concept but not released; privacy limits public access though synthetic
proxies are referenced.

ratings.metrics.rating: 7.0

ratings.metrics.reason: Uses manual annotation and quality scores, but lacks standardized automatic metrics.
ratings.reference_solution.rating: 6.0

ratings.reference _solution.reason: Provides few-shot prompt examples and human rating calibration details.
ratings.documentation.rating: 5.0

ratings.documentation.reason: Paper gives use cases, but code and data are not yet public.

id: the well

Citations: [23]
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28 LLM-Inference-Bench

date: 2024-10-31

version: TODO

last _updated: 2024-11

expired: unknown

valid: yes

valid _date: TODO

url: |https://github.com/argonne-lcf/LLM-Inference-Bench

doi: TODO

domain: LLM; HPC/inference

focus: Hardware performance benchmarking of LLMs on Al accelerators
keywords: - LLM - inference benchmarking - GPU - accelerator - throughput

summary: A suite evaluating inference performance of LLMs (LLaMA, Mistral, Qwen) across diverse accelerators (NVIDIA,
AMD, Intel, SambaNova) and frameworks (vLLM, DeepSpeed-MII, etc.), with an interactive dashboard and per-platform
metrics. :contentReference|oaicite:3]{index=3}

licensing: TODO

task types: - Inference Benchmarking
ai_capability measured: - Inference throughput - latency - hardware utilization
metrics: - Token throughput (tok/s) - Latency - Framework-hardware mix performance

models: - LLaMA-2-7B - LLaMA-2-70B - Mistral-7B - Qwen-7B
ml_motif: - HPC/inference
type: Dataset

ml_task: - Inference Benchmarking
solutions: TODO
notes: Licensed under BSD-3, maintained by Argonne; supports GPUs and accelerators. :contentRefer-

ence|oaicite:4]{index=4}

contact.name: Krishna Teja Chitty-Venkata (Argonne LCF)
contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark _ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.
ratings.specification.rating: 9.0

ratings.specification.reason: PDE tasks (forward/inverse) and I/O structures are clearly specified with detailed PDE
context and constraints.

ratings.dataset.rating: 10.0

ratings.dataset.reason: Hosted via DaRUS with a DOI, well-documented, versioned, and FAIR-compliant.
ratings.metrics.rating: 9.0

ratings.metrics.reason: Uses RMSE variants and Fourier-based errors.

ratings.reference solution.rating: 10.0

ratings.reference solution.reason: Baselines (FNO, U-Net, PINN) implemented and ready-to-run; strong community
adoption.

ratings.documentation.rating: 9.0

ratings.documentation.reason: Clean GitHub with usage, dataset links, and tutorial notebooks.
id: llm-inference-bench

Citations: [24]
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Ratings:

LLM-Inference-Bench

reference
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29 SGLang Framework

date: 2023-12-12

version: TODO

last _updated: 2025-06

expired: unknown

valid: yes

valid _date: TODO

url:  |https://github.com/sgl-project/sglang/tree/main/benchmark
doi: TODO

domain: LLM Vision

focus: Fast serving framework for LLMs and vision-language models
keywords: - LLM serving - vision-language - RadixAttention - performance - JSON decoding

summary: A high-performance open-source serving framework combining efficient backend runtime (RadixAttention, batch-
ing, quantization) and expressive frontend language, boosting LLM/VLM inference throughput up to ~3x over alternatives.
:contentReference|oaicite:5]{index=5}

licensing: TODO

task types: - Model serving framework

ai__capability measured: - Serving throughput - JSON/task-specific latency
metrics: - Tokens/sec - Time-to-first-token - Throughput gain vs baseline
models: - LLaVA - DeepSeek - Llama

ml_motif: - LLM Vision

type: Framework

ml_task: - Model serving

solutions: TODO

notes: Deployed in production (xAI, NVIDIA, Google Cloud); v0.4.8 release June 2025. :contentReference|oaicite:6]{index=6}
contact.name: SGLang Team

contact.email: unknown

datasets.links.name: Benchmark configs

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 8.0

ratings.specification.reason: Clearly framed around surrogate learning across 16 domains, but not all tasks are formally
posed or constrained in a unified benchmark protocol. Paper mentions performance on NVIDIA H100.

ratings.dataset.rating: 9.0
ratings.dataset.reason: FAIR-compliant physics simulation dataset, structured in HDF5 with unified metadata.
ratings.metrics.rating: 7.0

ratings.metrics.reason: Metrics like dataset size and domain coverage are listed, but standardized quantitative model
evaluation metrics (e.g., RMSE, MAE) are not enforced.

ratings.reference solution.rating: 9.0

ratings.reference solution.reason: FNO and U-Net baselines available; full benchmarking implementations pending
NeurIPS paper code release.

ratings.documentation.rating: 10.0

ratings.documentation.reason: Site and GitHub offer a unified API, metadata standards, and dataset loading tools;
NeurIPS paper adds detailed design context.

id: sglang framework
Citations: |[25]
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Ratings:
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30 VvLLM Inference and Serving Engine

date: 2023-09-12

version: TODO

last _updated: 2025-06

expired: unknown

valid: yes

valid _date: TODO

url: |https://github.com/vllm-project/vllm/tree/main/benchmarks

doi: TODO

domain: LLM; HPC/inference

focus: High-throughput, memory-efficient inference and serving engine for LLMs
keywords: - LLM inference - PagedAttention - CUDA graph - streaming API - quantization

summary: vLLM is a fast, high-throughput, memory-efficient inference and serving engine for large language models, featuring
PagedAttention, continuous batching, and support for quantized and pipelined model execution. Benchmarks compare it to
TensorRT-LLM, SGLang, and others. :contentReference[oaicite:1|{index=1}

licensing: TODO

task types: - Inference Benchmarking

ai_capability measured: - Throughput - latency - memory efficiency
metrics: - Tokens/sec - Time to First Token (TTFT) - Memory footprint
models: - LLaMA - Mixtral - FlashAttention-based models

ml_motif: - HPC/inference

type: Framework

ml _task: - Inference

solutions: TODO

notes: Incubated by LF AI and Data; achieves up to 24x throughput over HuggingFace Transformers :contentRefer-
ence|oaicite:2]{index=2}

contact.name: Woosuk Kwon (vVLLM Team)

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark _ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Benchmarks hardware performance of LLM inference across multiple platforms with well-
defined input/output and platform constraints.

ratings.dataset.rating: 7.0

ratings.dataset.reason: Uses structured log files and configs instead of conventional datasets; suitable for inference bench-
marking.

ratings.metrics.rating: 9.0

ratings.metrics.reason: Clear throughput, latency, and utilization metrics; platform comparison dashboard enhances eval-
uation.

ratings.reference solution.rating: 8.0

ratings.reference solution.reason: Includes reproducible scripts and example runs; models like LLaMA and Mistral are
referenced with platform-specific configs.

ratings.documentation.rating: 8.0

ratings.documentation.reason: GitHub contains clear instructions, platform details, and framework comparisons.
id: vllm_inference and serving engine

Citations: [26]
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Ratings:

VLLM Inference and Serving Engine

metricé ware
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31 vLLM Performance Dashboard

date: 2022-06-22

version: TODO

last _updated: 2025-01

expired: unknown

valid: yes

valid _date: TODO

url: |https://simon-mo-workspace.observablehq.cloud/vllm-dashboard-v0/
doi: TODO

domain: LLM; HPC/inference

focus: Interactive dashboard showing inference performance of vLLM
keywords: - Dashboard - Throughput visualization - Latency analysis - Metric tracking

summary: A live visual dashboard for vLLM showcasing throughput, latency, and other inference metrics across models and
hardware configurations.

licensing: TODO

task types: - Performance visualization

ai_capability measured: - Throughput - latency - hardware utilization
metrics: - Tokens/sec - TTFT - Memory usage

models: - LLaMA-2 - Mistral - Qwen

ml_motif: - HPC/inference

type: Framework

ml_task: - Visualization

solutions: TODO

notes: Built using ObservableHQ; integrates live data from vLLM benchmarks. The URL requires a login to access the
content.

contact.name: Simon Mo
contact.email: unknown
results.links.name: ChatGPT LLM
fair.reproducible: Yes
fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 8.0

ratings.specification.reason: Framed as a model-serving tool rather than a benchmark, but includes benchmark configu-
rations and real model tasks.

ratings.dataset.rating: 6.0

ratings.dataset.reason: Mostly uses dummy configs or external model endpoints for evaluation; not designed around a
formal dataset.

ratings.metrics.rating: 8.0
ratings.metrics.reason: Well-defined serving metrics: tokens/sec, time-to-first-token, and gain over baselines.
ratings.reference solution.rating: 9.0

ratings.reference solution.reason: Core framework includes full reproducible serving benchmarks and code; multiple
deployment case studies.

ratings.documentation.rating: 9.0

ratings.documentation.reason: High-quality usage guides, examples, and performance tuning docs.
id: vllm_performance dashboard

Citations: [27]
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32 Nixtla NeuralForecast

date: 2022-04-01

version: TODO

last _updated: 2025-06

expired: unknown

valid: yes

valid _date: TODO

url: |https://github.com/Nixtla/neuralforecast

doi: TODO

domain: Time-series forecasting; General ML

focus: High-performance neural forecasting library with >30 models
keywords: - time-series - neural forecasting - NBEATS, NHITS, TFT - probabilistic forecasting - usability

summary: NeuralForecast offers scalable, user-friendly implementations of over 30 neural forecasting models (NBEATS,
NHITS, TFT, DeepAR, etc.), emphasizing quality, usability, interpretability, and performance.

licensing: TODO

task types: - Time-series forecasting

ai_capability measured: - Forecast accuracy - interpretability - speed
metrics: - RMSE - MAPE - CRPS

models: - NBEATS - NHITS - TFT - DeepAR

ml_motif: - Time-series

type: Platform

ml_task: - Forecasting

solutions: TODO

notes: AutoModel supports hyperparameter tuning and distributed execution via Ray and Optuna. First official NHITS
implementation. contentReference oaicite:4 ndex=4

contact.name: Kin G. Olivares (Nixtla)
contact.email: unknown
results.links.name: ChatGPT LLM
fair.reproducible: Yes
fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 9.0

ratings.specification.reason: Targets high-throughput LLM inference via Paged Attention and memory-optimized serving;
benchmarks cover many configs.

ratings.dataset.rating: 7.0

ratings.dataset.reason: Focuses on model configs and streaming input/output pipelines rather than classical datasets.
ratings.metrics.rating: 9.0

ratings.metrics.reason: Strong token/sec, memory usage, and TTFT metrics; comparative plots and logs included.
ratings.reference _solution.rating: 9.0

ratings.reference _solution.reason: Benchmarks reproducible via script with support for multiple models and hardware
types.

ratings.documentation.rating: 9.0

ratings.documentation.reason: Excellent GitHub docs, CLI/API usage, and deployment walkthroughs.

id: nixtla neuralforecast

Citations: [28]
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Ratings:

Nixtla NeuralForecast

metricé
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33 Nixtla Neural Forecast NHITS

date: 2023-06-01

version: TODO

last _updated: 2025-06

expired: unknown

valid: yes

valid _date: TODO

url: |https://github.com/Nixtla/neuralforecast

doi: TODO

domain: Time-series; General ML

focus: Official NHITS implementation for long-horizon time series forecasting
keywords: - NHITS - long-horizon forecasting - neural interpolation - time-series

summary: NHITS (Neural Hierarchical Interpolation for Time Series) is a state-of-the-art model that improved accuracy by
~25% and reduced compute by 50x compared to Transformer baselines, using hierarchical interpolation and multi-rate sampling
:contentReference|oaicite:1]{index=1}.

licensing: TODO

task types: - Time-series forecasting

ai_capability measured: - Accuracy - compute efficiency for long series
metrics: - RMSE - MAPE

models: - NHITS

ml_motif: - Time-series

type: Platform

ml_task: - Forecasting

solutions: TODO

notes: Official implementation in NeuralForecast, included since its AAAI 2023 release.
contact.name: Kin G. Olivares (Nixtla)

contact.email: unknown

datasets.links.name: Standard forecast datasets, M4
results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 7.0

ratings.specification.reason: Primarily a visualization frontend; underlying benchmark definitions come from vLLM
project.

ratings.dataset.rating: 6.0
ratings.dataset.reason: No traditional dataset; displays live or logged benchmark metrics.
ratings.metrics.rating: 9.0

ratings.metrics.reason: Live throughput, memory, latency, and TTFT displayed interactively; highly informative for per-
formance analysis.

ratings.reference solution.rating: 7.0
ratings.reference solution.reason: Dashboard built on vLLM benchmarks but not itself a complete experiment package.
ratings.documentation.rating: 8.0

ratings.documentation.reason: Observable notebooks are intuitive; customization instructions are minimal but UI is self-
explanatory.

id: nixtla neural forecast nhits
Citations: [29]

7


https://github.com/Nixtla/neuralforecast

Ratings:
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34 Nixtla Neural Forecast TimeLLM

date: 2023-10-03

version: TODO

last _updated: 2025-06

expired: unknown

valid: yes

valid _date: TODO

url: |https://github.com/Nixtla/neuralforecast

doi: TODO

domain: Time-series; General ML

focus: Reprogramming LLMs for time series forecasting
keywords: - Time-LLM - language model - time-series - reprogramming

summary: Time-LLM uses reprogramming layers to adapt frozen LLMs for time series forecasting, treating forecasting as a
language task :contentReference|oaicite:2|{index=2}.

licensing: TODO

task types: - Time-series forecasting

ai_capability measured: - Model reuse via LLM - few-shot forecasting

metrics: - RMSE - MAPE

models: - Time-LLM

ml_motif: - Time-series

type: Platform

ml_task: - Forecasting

solutions: TODO

notes: Fully open-source; transforms forecasting using LLM text reconstruction.

contact.name: Ming Jin (Nixtla)

contact.email: unknown

datasets.links.name: Standard forecast datasets, M4

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 7.0

ratings.specification.reason: Describes forecasting with LLMs, but less formal on input/output or task framing.
ratings.dataset.rating: 6.0

ratings.dataset.reason: Uses open time series datasets, but lacks a consolidated data release or splits.
ratings.metrics.rating: 7.0

ratings.metrics.reason: Reports metrics like MASE and SMAPE, standard in forecasting.
ratings.reference solution.rating: 6.0

ratings.reference solution.reason: Provides TimeLLM with open source, but no other baselines included.
ratings.documentation.rating: 6.0

ratings.documentation.reason: GitHub readme with installation and example usage; lacks API or extensive tutorials.
id: nixtla neural forecast timellm

Citations: [30]

79


https://github.com/Nixtla/neuralforecast

Ratings:
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35 Nixtla Neural Forecast TimeGPT

date: 2023-10-05

version: TODO

last _updated: 2025-06

expired: unknown

valid: yes

valid _date: TODO

url: |https://github.com/Nixtla/neuralforecast

doi: TODO

domain: Time-series; General ML

focus: Time-series foundation model "TimeGPT" for forecasting and anomaly detection
keywords: - TimeGPT - foundation model - time-series - generative model

summary: TimeGPT is a transformer-based generative pretrained model on 100B+ time series data for zero-shot forecasting
and anomaly detection via API :contentReference|oaicite:3|{index=3}.

licensing: TODO

task types: - Time-series forecasting - Anomaly detection

ai_capability measured: - Zero-shot forecasting - anomaly detection
metrics: - RMSE - Anomaly detection metrics

models: - TimeGPT

ml_motif: - Time-series

type: Platform

ml_task: - Forecasting

solutions: TODO

notes: Offered via Nixtla API and Azure Studio; enterprise-grade support available.

contact.name: Azul Garza (Nixtla)

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 7.0

ratings.specification.reason: Describes forecasting with LLMs, but less formal on input/output or task framing.
ratings.dataset.rating: 6.0

ratings.dataset.reason: Uses open time series datasets, but lacks a consolidated data release or splits.
ratings.metrics.rating: 7.0

ratings.metrics.reason: Reports metrics like MASE and SMAPE, standard in forecasting.
ratings.reference solution.rating: 6.0

ratings.reference solution.reason: Provides TimeLLM with open source, but no other baselines included.
ratings.documentation.rating: 6.0

ratings.documentation.reason: GitHub readme with installation and example usage; lacks API or extensive tutorials.

id: nixtla neural forecast timegpt
Citations: [31]

Nixtla Neural Forecast TimeGPT

Ratings: reference 3o
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36 HDR ML Anomaly Challenge (Gravitational Waves)

date: 2025-03-03

version: TODO

last _updated: 2025-03

expired: unknown

valid: yes

valid _date: TODO

url: |https://www.codabench.org/competitions/2626/

doi: TODO

domain: Astrophysics; Time-series

focus: Detecting anomalous gravitational-wave signals from LIGO/Virgo datasets
keywords: - anomaly detection - gravitational waves - astrophysics - time-series

summary: A benchmark for detecting anomalous transient gravitational-wave signals, including "unknown-unknowns," using
preprocessed LIGO time-series at 4096 Hz. Competitors submit inference models on Codabench for continuous 50 ms segments
from dual interferometers. :contentReference[oaicite:1]{index=1}

licensing: TODO

task types: - Anomaly detection

ai capability measured: - Novel event detection in physical signals
metrics: - ROC-AUC - Precision/Recall

models: - Deep latent CNNs - Autoencoders

ml _motif: - Time-series

type: Dataset

ml_task: - Anomaly detection

solutions: TODO

notes: NSF HDR A3D3 sponsored; prize pool and starter kit provided on Codabench. :contentReference|oaicite:2]{index=2}
contact.name: HDR A3D3 Team

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.
ratings.specification.rating: 8.0

ratings.specification.reason: Novel approach treating forecasting as text generation is explained; framing is less conven-
tional.

ratings.dataset.rating: 9.0
ratings.dataset.reason: Compatible with standard forecasting datasets (e.g., M4, electricity).
ratings.metrics.rating: 8.0

ratings.metrics.reason: RMSE and MAPE are included, but less emphasis on interpretability or time-series domain con-
straints.

ratings.reference solution.rating: 9.0
ratings.reference solution.reason: Open-source with reprogramming layers, LLM interface scripts provided.
ratings.documentation.rating: 8.0

ratings.documentation.reason: Model and architecture overview present, though usability guide is slightly lighter than
others.

id: hdr_ml anomaly challenge gravitational waves
Citations: [32]

82


https://www.codabench.org/competitions/2626/

Ratings:

HDR ML Anomaly Challenge (Gravitational Waves)
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37 HDR ML Anomaly Challenge (Butterfly)

date: 2025-03-03

version: TODO

last _updated: 2025-03

expired: unknown

valid: yes

valid _date: TODO

url: |https://www.codabench.org/competitions/3764/

doi: TODO

domain: Genomics; Image/CV

focus: Detecting hybrid butterflies via image anomaly detection in genomic-informed dataset
keywords: - anomaly detection - computer vision - genomics - butterfly hybrids

summary: Image-based challenge for detecting butterfly hybrids in microscopy-driven species data. Participants evaluate
models on Codabench using image segmentation/classification. :contentReference|oaicite:3]{index=3}

licensing: TODO

task types: - Anomaly detection

ai_capability measured: - Hybrid detection in biological systems

metrics: - Classification accuracy - F1 score

models: - CNN-based detectors

ml_motif: - Image/CV

type: Dataset

ml_task: - Anomaly detection

solutions: TODO

notes: Hybrid detection benchmarks hosted on Codabench. :contentReference|oaicite:4]{index=4}
contact.name: Imageomics/HDR Team

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 8.0

ratings.specification.reason: Task of detecting rare anomalies in butterfly physics is well-described with physics motivation.
ratings.dataset.rating: 7.0

ratings.dataset.reason: Real detector data with injected anomalies is available, but requires NDA for full access.
ratings.metrics.rating: 7.0

ratings.metrics.reason: Uses ROC, F1, and anomaly precision, standard in challenge evaluations.
ratings.reference _solution.rating: 4.0

ratings.reference _solution.reason: Partial baselines described, but no codebase or reproducible runs.
ratings.documentation.rating: 6.0

ratings.documentation.reason: Challenge site includes overview and metrics, but limited in walkthrough or examples.

id: hdr_ml anomaly challenge butterfly
Citations: [32]

HDR ML Anomaly Challenge (Butterfly)

Ratings: reference %o
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38 HDR ML Anomaly Challenge (Sea Level Rise)

date: 2025-03-03

version: TODO

last _updated: 2025-03

expired: unknown

valid: yes

valid _date: TODO

url: |https://www.codabench.org/competitions/3223/

doi: TODO

domain: Climate Science; Time-series, Image/CV

focus: Detecting anomalous sea-level rise and flooding events via time-series and satellite imagery
keywords: - anomaly detection - climate science - sea-level rise - time-series - remote sensing

summary: A challenge combining North Atlantic sea-level time-series and satellite imagery to detect flooding anomalies.
Models submitted via Codabench. :contentReference|oaicite:5|{index=5}

licensing: TODO

task types: - Anomaly detection

ai capability measured: - Detection of environmental anomalies

metrics: - ROC-AUC - Precision/Recall

models: - CNNs, RNNs, Transformers

ml _motif: - Time-series, Image/CV

type: Dataset

ml_task: - Anomaly detection

solutions: TODO

notes: Sponsored by NSF HDR; integrates sensor and satellite data. :contentReference|oaicite:6]{index=6}
contact.name: HDR A3D3 Team

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: TBD

ratings.specification.rating: 9.0

ratings.specification.reason: Clear anomaly detection objective framed for physical signal discovery (LIGO/Virgo).
ratings.dataset.rating: 10.0

ratings.dataset.reason: Preprocessed waveform data from dual interferometers, public and well-structured.
ratings.metrics.rating: 9.0

ratings.metrics.reason: ROC-AUC, Precision/Recall, and confusion-based metrics are standardized.
ratings.reference _solution.rating: 1.0

ratings.reference solution.reason: No starter model or baseline code linked
ratings.documentation.rating: 9.0

ratings.documentation.reason: Codabench page, GitHub starter kit, and related papers provide strong guidance.
id: hdr_ml anomaly challenge sea level rise

Citations: [32]

HDR ML Anomaly Challenge (Sea Level Rise)

Ratings. reference %o
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39 Single Qubit Readout on QICK System

date: 2025-01-24

version: TODO

last _updated: 2025-02

expired: unknown

valid: yes

valid _date: TODO

url:  |https://github.com/fastmachinelearning/ml-quantum-readout
doi: TODO

domain: Quantum Computing

focus: Real-time single-qubit state classification using FPGA firmware
keywords: - qubit readout - hlsdml - FPGA - QICK

summary: Implements real-time ML models for single-qubit readout on the Quantum Instrumentation Control Kit (QICK),
using hls4ml to deploy quantized neural networks on RFSoC FPGAs. Offers high-fidelity, low-latency quantum state discrimi-
nation. :contentReference|oaicite:0]{index=0}

licensing: TODO

task types: - Classification

ai_capability measured: - Single-shot fidelity - inference latency
metrics: - Accuracy - Latency

models: - hlsdml quantized NN

ml_motif: - Real-time

type: Benchmark

ml task: - Supervised Learning

solutions: TODO

notes: Achieves ~96% fidelity with ~32 ns latency and low FPGA resource utilization. :contentReference[oaicite:1]{index=1}
contact.name: Javier Campos, Giuseppe Di Guglielmo
contact.email: unknown

datasets.links.name: Zenodo: ml-quantum-readout dataset
datasets.links.url: [zenodo.org/records,/14427490|
results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 8.0

ratings.specification.reason: Task clearly framed around detecting hybrid species via images, but exact labeling methods
and hybrid definitions may need elaboration.

ratings.dataset.rating: 8.0

ratings.dataset.reason: Dataset hosted on Codabench; appears structured but details on image sourcing and labeling
pipeline are limited.

ratings.metrics.rating: 9.0

ratings.metrics.reason: Classification accuracy and F1 are standard and appropriate.

ratings.reference solution.rating: 1.0

ratings.reference solution.reason: No starter model or baseline code linked

ratings.documentation.rating: 7.5

ratings.documentation.reason: Codabench task page describes dataset and evaluation method but lacks full API/docs.
id: single qubit readout on qick system

Citations: [33]
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40 GPQA: A Graduate-Level Google-Proof Question and Answer
Benchmark

date: 2023-11-20

version: TODO

last updated: 2023-11

expired: unknown

valid: yes

valid__date: TODO

url: |https://arxiv.org/abs/2311.12022

doi: TODO

domain: Science (Biology, Physics, Chemistry)

focus: Graduate-level, expert-validated multiple-choice questions hard even with web access
keywords: - Google-proof - multiple-choice - expert reasoning - science QA

summary: Contains 448 challenging questions written by domain experts, with expert accuracy at 65% (74% discounting
clear errors) and non-experts reaching just 34%. GPT-4 baseline scores ~39%-designed for scalable oversight evaluation.
:contentReference|oaicite:2]{index=2}

licensing: TODO

task types: - Multiple choice

ai__capability measured: - Scientific reasoning - knowledge probing

metrics: - Accuracy

models: - GPT-4 baseline

ml_motif: - Multiple choice

type: Benchmark

ml_task: - Multiple choice

solutions: TODO

notes: Google-proof, supports oversight research.

contact.name: David Rein (NYU)

contact.email: unknown

datasets.links.name: GPQA dataset

datasets.links.url:

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Clear dual-modality task (image + time-series); environmental focus is well described.
ratings.dataset.rating: 9.0

ratings.dataset.reason: Time-series and satellite imagery data provided; sensor info and collection intervals are explained.
ratings.metrics.rating: 9.0

ratings.metrics.reason: ROC-AUC, Precision/Recall are appropriate and robust.
ratings.reference solution.rating: 1.0

ratings.reference solution.reason: No starter model or baseline code linked
ratings.documentation.rating: 6.5

ratings.documentation.reason: Moderate Codabench documentation with climate context; lacks pipeline-level walk-
through.

id: gpga a graduate-level google-proof question and answer benchmark
Citations: [34]
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41 SeafloorAl

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url:  |https://neurips.cc/virtual /2024 /poster/97432

doi: TODO

domain: Marine Science; Vision-Language

focus: Large-scale vision-language dataset for seafloor mapping and geological classification
keywords: - sonar imagery - vision-language - seafloor mapping - segmentation - QA

summary: A first-of-its-kind dataset covering 17,300 sq.km of seafloor with 696K sonar images, 827K segmentation masks,
and 696K natural-language descriptions plus ~7M QA pairs-designed for both vision and language-based ML models in marine
science :contentReference[oaicite:1]{index=1}.

licensing: TODO

task types: - Image segmentation - Vision-language QA

ai_capability measured: - Geospatial understanding - multimodal reasoning

metrics: - Segmentation pixel accuracy - QA accuracy

models: - SegFormer - ViLT-style multimodal models

ml_ motif: - Vision-Language

type: Dataset

ml task: - Segmentation, QA

solutions: TODO

notes: Data processing code publicly available, covering five geological layers; curated with marine scientists :contentRefer-
ence|oaicite:2]{index=2}.

contact.name: Kien X. Nguyen

contact.email: unknown

datasets.links.name: Sonar imagery + annotations

datasets.links.url: [T15 TBl

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Real-time qubit classification task clearly defined in quantum instrumentation context.
ratings.dataset.rating: 9.0

ratings.dataset.reason: Dataset available on Zenodo with signal traces; compact and reproducible.
ratings.metrics.rating: 9.0

ratings.metrics.reason: Accuracy and latency are well defined and crucial in this setting.

ratings.reference _solution.rating: 9.0

ratings.reference solution.reason: GitHub repo has reproducible code and HLS firmware targeting FPGA.
ratings.documentation.rating: 8.0

ratings.documentation.reason: Good setup instructions, but no interactive visualization or starter notebook.
id: seafloorai

Citations: [35]
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42 SuperCon3D

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url:  |https://neurips.cc/virtual /2024 /poster/97553

doi: TODO

domain: Materials Science; Superconductivity

focus: Dataset and models for predicting and generating high-Tc superconductors using 3D crystal structures
keywords: - superconductivity - crystal structures - equivariant GNN - generative models

summary: SuperCon3D introduces 3D crystal structures with associated critical temperatures (Tc) and two deep-learning
models: SODNet (equivariant graph model) and DiffCSP-SC (diffusion generator) designed to screen and synthesize high-Tc
candidates :contentReference[oaicite:3]{index=3}.

licensing: TODO

task types: - Regression (Tc prediction) - Generative modeling

ai_capability measured: - Structure-to-property prediction - structure generation

metrics: - MAE (Tc) - Validity of generated structures

models: - SODNet - Diff CSP-SC

ml_ motif: - Materials Modeling

type: Dataset + Models

ml _task: - Regression, Generation

solutions: TODO

notes: Demonstrates advantage of combining ordered and disordered structural data in model design :contentRefer-
ence|oaicite:4]{index=4}.

contact.name: Zhong Zuo

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark _ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 10.0

ratings.specification.reason: Multimodal task (segmentation + natural language QA pairs);.
ratings.dataset.rating: 10.0

ratings.dataset.reason: sonar imagery + masks + descriptions, georeferenced and labeled with QA
ratings.metrics.rating: 9.0

ratings.metrics.reason: Pixel accuracy and QA metrics clearly defined; tasks split by modality.
ratings.reference _solution.rating: 8.0

ratings.reference solution.reason: Baseline models (SegFormer, ViLT) are cited, partial configs likely available.
ratings.documentation.rating: 8.5

ratings.documentation.reason: Paper + GitHub metadata and processing details are comprehensive, though full dataset
is not yet available.

id: supercond
Citations: [36]
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43 GeSS

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url:  |https://neurips.cc/virtual /2024 /poster/97816

doi: TODO

domain: Scientific ML; Geometric Deep Learning

focus: Benchmark suite evaluating geometric deep learning models under real-world distribution shifts
keywords: - geometric deep learning - distribution shift - OOD robustness - scientific applications
summary: GeSS provides 30 benchmark scenarios across particle physics, materials science, and biochemistry, evaluating 3
GDL backbones and 11 algorithms under covariate, concept, and conditional shifts, with varied OOD access :contentRefer-
ence|oaicite:5]{index=5}.

licensing: TODO

task types: - Classification - Regression

ai_capability measured: - OOD performance in scientific settings

metrics: - Accuracy - RMSE - OOD robustness delta

models: - GCN - EGNN - DimeNet++

ml_motif: - Geometric DL

type: Benchmark

ml _task: - Classification, Regression

solutions: TODO

notes: Includes no-OOD, unlabeled-OOD, and few-label scenarios :contentReference|oaicite:6]{index=6}.
contact.name: Deyu Zou

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Well-defined problem (Tc prediction, generation) with strong scientific motivation (high-Tc
materials), but no formal hardware constraints.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Includes curated 3D crystal structures and Tc data; readily downloadable and used in paper models.
ratings.metrics.rating: 9.0

ratings.metrics.reason: MAE and structural validity used, well-established in materials modeling.

ratings.reference _solution.rating: 8.0

ratings.reference solution.reason: Provides two reference models (SODNet, DiffCSP-SC) with results. Code likely avail-
able post-conference.

ratings.documentation.rating: 8.0

ratings.documentation.reason: Paper and poster explain design choices well; software availability confirms reproducibility
but limited external documentation.

id: gess
Citations: |[37]
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44 Vocal Call Locator (VCL)

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url: |https://neurips.cc/virtual /2024 /poster,/97470

doi: TODO

domain: Neuroscience; Bioacoustics

focus: Benchmarking sound-source localization of rodent vocalizations from multi-channel audio
keywords: - source localization - bioacoustics - time-series - SSL

summary: The first large-scale benchmark (767K sounds across 9 conditions) for localizing rodent vocal calls using synchro-
nized audio and video in standard lab environments, enabling systematic evaluation of sound-source localization algorithms in
bioacoustics :contentReference[oaicite:1]{index=1}.

licensing: TODO

task types: - Sound source localization

ai_capability measured: - Source localization accuracy in bioacoustic settings
metrics: - Localization error (cm) - Recall/Precision

models: - CNN-based SSL models

ml_motif: - Real-time

type: Dataset

ml_task: - Anomaly detection / localization

solutions: TODO

notes: Dataset spans real, simulated, and mixed audio; supports benchmarking across data types :contentRefer-
ence|oaicite:2]{index=2}.

contact.name: Ralph Peterson

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Clear benchmark scenarios across GDL tasks under multiple real-world shift settings; OOD
settings precisely categorized.

ratings.dataset.rating: 8.0

ratings.dataset.reason: Scientific graph datasets provided in multiple shift regimes; standardized splits across domains.
Exact format of data not specified.

ratings.metrics.rating: 9.0
ratings.metrics.reason: Includes base metrics (accuracy, RMSE) plus OOD delta robustness for evaluation under shifts.
ratings.reference solution.rating: 9.0

ratings.reference solution.reason: Multiple baselines (11 algorithms x 3 backbones) evaluated; setup supports repro-
ducible comparison.

ratings.documentation.rating: 2.0

ratings.documentation.reason: Paper, poster, and source code provide thorough access to methodology and implementa-
tion. Setup instructions and accompanying code not present.

id: vocal call locator vcl
Citations: [38]

96


https://neurips.cc/virtual/2024/poster/97470

Ratings:

Vocal Call Locator (VCL)

metricé

reference

97



45 MassSpecGym

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url:  |https://neurips.cc/virtual /2024 /poster/97823

doi: TODO

domain: Cheminformatics; Molecular Discovery

focus: Benchmark suite for discovery and identification of molecules via MS/MS
keywords: - mass spectrometry - molecular structure - de novo generation - retrieval - dataset

summary: MassSpecGym curates the largest public MS/MS dataset with three standardized tasks-de novo structure genera-
tion, molecule retrieval, and spectrum simulation-using challenging generalization splits to propel ML-driven molecule discovery
:contentReference|oaicite:3]{index=3}.

licensing: TODO

task types: - De novo generation - Retrieval - Simulation

ai_capability measured: - Molecular identification and generation from spectral data

metrics: - Structure accuracy - Retrieval precision - Simulation MSE

models: - Graph-based generative models - Retrieval baselines

ml_motif: - Benchmark

type: Dataset + Benchmark

ml _task: - Generation, retrieval, simulation

solutions: TODO

notes: Dataset™>1M spectra; open-source GitHub repo; widely cited as a go-to benchmark for MS/MS tasks :contentRefer-
ence|oaicite:4]{index=4}.

contact.name: Roman Bushuiev

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark _ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Focused on sound source localization for rodent vocalizations in lab settings; well-scoped.
ratings.dataset.rating: 9.5

ratings.dataset.reason: 767000 annotated audio segments across diverse conditions. Minor deduction for no train/test/valid
split.

ratings.metrics.rating: 9.5

ratings.metrics.reason: Localization error, precision/recall used

ratings.reference solution.rating: 7.0

ratings.reference solution.reason: CNN-based baselines referenced but unclear whether pretrained models or training

code are available.
ratings.documentation.rating: 2.0

ratings.documentation.reason: Poster and paper outline benchmark intent and setup; repo expected but not confirmed in
dataset card.

id: massspecgym
Citations: |[39]

98


https://neurips.cc/virtual/2024/poster/97823

Ratings:

metric§

reference

MassSpecGym

99



46 Urban Data Layer (UDL)

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url: |https://neurips.cc/virtual /2024 /poster/97837

doi: TODO

domain: Urban Computing; Data Engineering

focus: Unified data pipeline for multi-modal urban science research
keywords: - data pipeline - urban science - multi-modal - benchmark
summary: UrbanDatalLayer standardizes heterogeneous urban data formats and provides pipelines for tasks like air qual-
ity prediction and land-use classification, enabling the rapid creation of multi-modal urban benchmarks :contentRefer-
ence|oaicite:5]{index=>5}.

licensing: TODO

task types: - Prediction - Classification

ai_capability measured: - Multi-modal urban inference - standardization
metrics: - Task-specific accuracy or RMSE

models: - Baseline regression/classification pipelines

ml_ motif: - Data engineering

type: Framework

ml _task: - Prediction, classification

solutions: TODO

notes: Source code available on GitHub (SJTU-CILAB/udl); promotes reusable urban-science foundation models :contentRe-
ference|oaicite:6]{index=6}.

contact.name: Yiheng Wang

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: Three tasks (de novo generation, retrieval, simulation) are clearly defined for MS/MS molecule
discovery.

ratings.dataset.rating: 10.0

ratings.dataset.reason: Over 1 million spectra with structure annotations; dataset is open-source and well-documented.
ratings.metrics.rating: 9.0

ratings.metrics.reason: Task-appropriate metrics (structure accuracy, precision, MSE) are specified and used consistently.
ratings.reference solution.rating: 8.0

ratings.reference solution.reason: Baseline models are available (graph-based and retrieval), though not exhaustive.
ratings.documentation.rating: 9.0

ratings.documentation.reason: GitHub repo and poster provide code and reproducibility guidance.

id: wurban data layer udl

Citations: [40]
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47 Delta Squared-DFT

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url:  |https://neurips.cc/virtual /2024 /poster/97788

doi: TODO

domain: Computational Chemistry; Materials Science

focus: Benchmarking machine-learning corrections to DFT using Delta Squared-trained models for reaction energies
keywords: - density functional theory - Delta Squared-ML correction - reaction energetics - quantum chemistry

summary: Introduces the Delta Squared-ML paradigm-using ML corrections to DFT to predict reaction energies with ac-
curacy comparable to CCSD(T), while training on small CC datasets. Evaluated across 10 reaction datasets covering organic
and organometallic transformations.

licensing: TODO
task types: - Regression

ai_capability measured: - High-accuracy energy prediction - DFT correction
metrics: - Mean Absolute Error (e¢V) - Energy ranking accuracy
models: - Delta Squared-ML correction networks - Kernel ridge regression

ml_motif: - Scientific ML

type: Dataset + Benchmark

ml _task: - Regression

solutions: TODO

notes: Demonstrates CC-level accuracy with 1% of high-level data. Benchmarks publicly included for reproducibility.
contact.name: Wei Liu
contact.email: unknown
results.links.name: ChatGPT LLM
fair.reproducible: Yes
fair.benchmark ready: Yes
ratings.software.rating: 0
ratings.software.reason: Not analyzed.
ratings.specification.rating: 8.0

ratings.specification.reason: Clear goals around unifying urban data formats and tasks (e.g., air quality prediction), though
some specifics could be more formal.

ratings.dataset.rating: 9.0

ratings.dataset.reason: Multi-modal data is standardized and accessible; GitHub repo available.
ratings.metrics.rating: 8.0

ratings.metrics.reason: Uses common task metrics like accuracy/RMSE, though varies by task.
ratings.reference _solution.rating: 7.0

ratings.reference solution.reason: Baseline regression/classification models included.
ratings.documentation.rating: 8.0

ratings.documentation.reason: Source code supports pipeline reuse, but formal evaluation splits may vary.
id: delta_squared-dft

Citations: [41]
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48 LLMs for Crop Science

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url:  |https://neurips.cc/virtual /2024 /poster/97570

doi: TODO

domain: Agricultural Science; NLP

focus: Evaluating LLMs on crop trait QA and textual inference tasks with domain-specific prompts
keywords: - crop science - prompt engineering - domain adaptation - question answering

summary: FEstablishes a benchmark of 3,500 expert-annotated prompts and QA pairs covering crop traits, growth stages,
and environmental interactions. Tests GPT-style LLMs on accuracy and domain reasoning using in-context, chain-of-thought,
and retrieval-augmented prompts.

licensing: TODO

task types: - Question Answering - Inference
ai_capability measured: - Scientific knowledge - crop reasoning
metrics: - Accuracy - F1 score

models: - GPT-4 - LLaMA-2-13B - T5-XXL

ml_ motif: - NLP

type: Dataset

ml _task: - QA, inference

solutions: TODO

notes: Includes examples with retrieval-augmented and chain-of-thought prompt templates; supports few-shot adaptation.
contact.name: Deepak Patel

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 9.0

ratings.specification.reason: The task of ML correction to DFT energy predictions is well-specified.
ratings.dataset.rating: 9.0

ratings.dataset.reason: 10 public reaction datasets with DFT and CC references; well-documented.
ratings.metrics.rating: 8.0

ratings.metrics.reason: Uses MAE and ranking accuracy, suitable for this task.

ratings.reference solution.rating: 8.0

ratings.reference solution.reason: Includes both Delta”2 and KRR baselines.
ratings.documentation.rating: 9.0

ratings.documentation.reason: Public benchmarks and clear reproducibility via datasets and model code.

id: llms for crop science
Citations: [42]

LLMs for Crop Science

metrics software

Ratings: reference Souti
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49 SPIQA (LLM)

date: 2024-12-13

version: TODO

last _updated: 2024-12

expired: unknown

valid: yes

valid _date: TODO

url: https://neurips.cc/virtual /2024 /poster/97575

doi: TODO

domain: Multimodal Scientific QA; Computer Vision

focus: Evaluating LLMs on image-based scientific paper figure QA tasks (LLM Adapter performance)
keywords: - multimodal QA - scientific figures - image-+text - chain-of-thought prompting

summary: A workshop version of SPIQA comparing 10 LLM adapter methods on the SPIQA benchmark with scientific
diagram/questions. Highlights performance differences between chain-of-thought and end-to-end adapter models.

licensing: TODO

task types: - Multimodal QA

ai_capability measured: - Visual reasoning - scientific figure understanding

metrics: - Accuracy - F1 score

models: - LLaVA - MiniGPT-4 - Owl-LLM adapter variants

ml_motif: - Multimodal QA

type: Benchmark

ml_task: - Multimodal QA

solutions: TODO

notes: Companion to SPIQA main benchmark; compares adapter strategies using same images and QA pairs.
contact.name: Xiaoyan Zhong

contact.email: unknown

results.links.name: ChatGPT LLM

fair.reproducible: Yes

fair.benchmark ready: Yes

ratings.software.rating: 0

ratings.software.reason: Not analyzed.

ratings.specification.rating: 6.0

ratings.specification.reason: Task of QA over scientific figures is interesting but not fully formalized in input/output terms.
ratings.dataset.rating: 6.0

ratings.dataset.reason: Uses SPIQA dataset with 710 adapters; figures and questions are included, but not fully open.
ratings.metrics.rating: 7.0

ratings.metrics.reason: Reports accuracy and F1; fair but no visual reasoning-specific metric.
ratings.reference _solution.rating: 6.0

ratings.reference _solution.reason: 10 LLM adapter baselines; results included.
ratings.documentation.rating: 5.0

ratings.documentation.reason: Poster paper and limited documentation; no reproducibility instructions.
id: spiqa_llm

Citations: [43]

SPIQA (LLM)

metrig software

Ratings: reference Soluti
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