Skip to content

4D-STEM

← Back to all benchmarks

Date: 2023-12-03

Name: 4D-STEM

Domain: Materials Science

Focus: Real-time ML for scanning transmission electron microscopy

Task Types: Image Classification, Streamed data inference

Metrics: Classification accuracy, Throughput

Models: CNN models (prototype)

AI/ML Motif: Classification

Resources

Benchmark: Visit

Keywords

Citation

  • Shuyu Qin, Joshua Agar, and Nhan Tran. Extremely noisy 4d-tem strain mapping using cycle consistent spatial transforming autoencoders. In AI for Accelerated Materials Design - NeurIPS 2023 Workshop. 2023. URL: https://openreview.net/forum?id=7yt3N0o0W9.
@inproceedings{qin2023extremely,
  title={Extremely Noisy 4D-TEM Strain Mapping Using Cycle Consistent Spatial Transforming Autoencoders},
  author={Shuyu Qin and Joshua Agar and Nhan Tran},
  booktitle={AI for Accelerated Materials Design - NeurIPS 2023 Workshop},
  year={2023},
  url={https://openreview.net/forum?id=7yt3N0o0W9}
}

Ratings

CategoryRating
Software
2.00
No standalone code repository or setup instructions provided
Specification
5.00
None
Dataset
2.00
No dataset links or FAIR metadata; unclear public access
Metrics
4.00
Only localization accuracy and inference time mentioned; not formally benchmarked with scripts
Reference Solution
3.00
BraggNN model is described and evaluated, but no direct implementation or inference scripts available
Documentation
3.00
Paper is clear, but lacks a GitHub repo or full reproducibility pipeline
Average rating: 3.17/5

Radar plot

4D-STEM radar

Edit: edit this entry