Skip to content

Irregular Sensor Data Compression

← Back to all benchmarks

Date: 2024-05-01

Name: Irregular Sensor Data Compression

Domain: High Energy Physics

Focus: Real-time compression of sparse sensor data with autoencoders

Task Types: Compression

Metrics: MSE, Compression ratio

Models: Autoencoder, Quantized autoencoder

AI/ML Motif: Generative

Keywords

Citation

  • Javier Duarte, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi, Shvetank Prakash, and Vijay Janapa Reddi. Fastml science benchmarks: accelerating real-time scientific edge machine learning. 2022. URL: https://arxiv.org/abs/2207.07958, arXiv:2207.07958.
@misc{duarte2022fastmlsciencebenchmarksaccelerating2,
  archiveprefix = {arXiv},
  author        = {Javier Duarte and Nhan Tran and Ben Hawks and Christian Herwig and Jules Muhizi and Shvetank Prakash and Reddi, Vijay Janapa},
  eprint        = {2207.07958},
  primaryclass  = {cs.LG},
  title         = {FastML Science Benchmarks: Accelerating Real-Time Scientific Edge Machine Learning},
  url           = {https://arxiv.org/abs/2207.07958},
  year          = {2022}
}

Ratings

CategoryRating
Software
3.00
Not containerized; Full automation and documentation could be improved
Specification
4.00
Exact latency or resource constraints not numerically specified
Dataset
5.00
All criteria met
Metrics
5.00
All criteria met
Reference Solution
4.00
Not fully documented or automated for reproducibility
Documentation
4.00
Setup for deployment (e.g., FPGA pipeline) requires familiarity with tooling
Average rating: 4.17/5

Radar plot

Irregular Sensor Data Compression radar

Edit: edit this entry